Document Type


Publication Date



© 2014, Springer Science+Business Media Dordrecht. The resprouting ability of woody plants in frequently burned ecosystems may be influenced by the season and method of topkill. We conducted an experiment to test for the effects of season and method of topkill on aboveground biomass, belowground biomass, and mortality of hardwoods found in a southeastern U.S. pine-grassland. We predicted that topkill occurring during the growing season and topkill by fire would have greater negative impacts on resprouting and root growth and result in greater mortality. We conducted a shadehouse experiment in north Florida in which we applied topkill treatments (burn, clip, and no-topkill) in three seasons (dormant, early growing, and mid growing) to Quercus nigra (water oak) saplings. Plants were destructively sampled 12 months post-treatment to measure aboveground and belowground biomass. Saplings topkilled in the early and mid growing seasons had reduced growth and greater mortality one-year post-treatment compared to plants topkilled in the dormant season. While there was no difference in one-year post-treatment biomass or mortality of saplings between the two methods of topkill, clipped plants had more stems and shorter average stem height than plants topkilled by fire. Root growth continued despite topkilling for all seasons and was greatest for no-topkill plants. These results suggest that while topkill reduces biomass, hardwoods have evolved to maintain belowground biomass reserves, enabling genets to resprout following subsequent topkilling and to persist through frequent disturbances.

Publication Source (Journal or Book title)

Plant Ecology

First Page


Last Page