Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

Elin Almroth, Göteborgs Universitet
Anders Tengberg, Göteborgs Universitet
Johan H. Andersson, NIOO Centre for Estuarine and Marine Ecology - CEME
Svetlana Pakhomova, P.P.Shirshov Institute of Oceanology, Russian Academy of Sciences
Per O.J. Hall, Göteborgs Universitet

Abstract

The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF), Baltic Sea during three cruises in June-July 2003, September 2004 and May 2005. The stations were situated on different bottom types in the western, central and eastern part, respectively, of the open GoF. The fluxes were measured in-situ using the autonomous Göteborg benthic lander. To simulate resuspension events, the stirring speed was increased in two of the four chambers of the lander after approximately half of the incubation time. The other two chambers were used as control chambers. Clear effects of resuspension were observed on the oxygen fluxes where an increase of the consumption was observed in 88% of the cases and on average with 59% (stdev=53). The NH4+ fluxes were affected in 50% of the cases (4 out of 8 incubations) at stations with low bottom water oxygen concentrations, but in no cases where the bottom water was oxygenated (0 out of 9 incubations). The NH4+ fluxes decreased by 26±27% in 2005 and by 114±19% in 2003. There was no clear effect of resuspension on the fluxes of any of the other solutes in this study. Thus, resuspension events did not play a significant role in release/uptake of NO3-, PO43-, Si(OH)4, DIC, Fe and Mn in GoF sediments. However, increased oxygen consumption as a result of resuspension may lead to spreading of anoxic/suboxic bottom water conditions, and thus indirectly to increased benthic release of phosphate, ammonium and iron. © 2009 Elsevier Ltd. All rights reserved.