Deffrential distribution of gonadotropin-releasing hormone- immunoreactive neurons in the stingray brain: Functional and evolutionary considerations

Paul M. Forlano, Florida Institute of Technology
Karen P. Maruska, Florida Institute of Technology
Stacia A. Sower, University of New Hampshire Durham
Judy A. King, University of Cape Town, Faculty of Health Sciences
Timothy C. Tricas, Florida Institute of Technology


Gonadotropin-releasing hormone (GnRH) is a neuropeptide that occurs in multiple structural forms among vertebrate species. Bony fishes, amphibians, reptiles, birds, and mammals express different forms of GnRH in the forebrain and endocrine regions of the hypothalamus which regulate the release of reproductive gonadotropins from the pituitary. In contrast, previous studies on bony fishes and tetrapods have localized the chicken GnRH-II (cGnRH-II) nucleus in the midbrain tegmentum and, combined with cladistic analyses, indicate that cGnRH-II is the most conserved form throughout vertebrate evolution. However, in elasmobranch fishes, the neuroanatomical distribution of cGnRH-II and dogfish GnRH (dfGnRH) cells and their relative projections in the brain are unknown. We used high-performance liquid chromatography and radioimmunoassay to test for differential distributions of various GnRH forms in tissues from the terminal nerve (TN) ganglia, preoptic area, and midbrain of the Atlantic stingray, Dasyatis sabina. These experiments identified major peaks that coelute with cGnRH-II and dfGnRH, minor peaks that coelute with lamprey GnRH-III (1GnRH-III), and unknown forms. Immunocytochemistry experiments on brain sections show that dfGnRH-immunoreactive (-ir) cell bodies are localized in the TN ganglia, the caudal ventral telencephalon, and the preoptic area. Axons of these cells project to regions of the hypothalamus and pituitary, diencephalic centers of sensory and behavioral integration, and the midbrain. A large, discrete, bilateral column of cGnRH-II-ir neurons in the midbrain tegmentum has sparse axonal projections to the hypothalamus and regions of the pituitary but numerous projections to sensory processing centers in the midbrain and hindbrain. Immunocytochemical and chromatographic data are consistent with the presence of 1GnRH- III and other GnRH forms in the TN that differ from dfGnRH and cGnRH-II. This is the first study that shows differential distribution of cGnRH-II and dfGnRH in the elasmobranch brain and supports the hypothesis of divergent function of GnRH variants related to gonadotropin control and neuromodulation of sensory function. (C) 2000 Academic Press.