Document Type

Article

Publication Date

10-15-2020

Abstract

© 2020 Wiley Periodicals, Inc. Estrogen synthesis and signaling in the brains of vertebrates has pleotropic effects ranging from neurogenesis to modulation of behaviors. The majority of studies on brain-derived estrogens focus on males, but estrogenic signaling in females likely plays important roles in regulation of reproductive cycling and social behaviors. We used females of the mouth brooding African cichlid fish, Astatotilapia burtoni, to test for reproductive state-dependent changes in estrogenic signaling capacity within microdissected brain nuclei that are important for social behaviors. Expression levels of the rate-limiting enzyme aromatase, but not estrogen receptors, measured by qPCR changes across the reproductive cycle. Gravid females that are close to spawning had higher aromatase levels in all brain regions compared to females with lower reproductive potential. This brain aromatase expression was positively correlated with circulating estradiol levels and ovarian readiness. Using chromogenic in situ hybridization we localized aromatase-expressing cells to ependymal regions bordering the ventricles from the forebrain to the hindbrain, and observed more abundant staining in gravid compared to mouth brooding females in most regions. Staining was most prominent in subpallial telencephalic regions, and diencephalic regions of the preoptic area, thalamus, and hypothalamus, but was also observed in sensory and sensorimotor areas of the midbrain and hindbrain. Aromatase expression was observed in radial glial cells, revealed by co-localization with the glial marker GFAP and absence of co-localization with the neuronal marker HuC/D. Collectively these results support the idea that brain-derived estradiol in females may serve important functions in reproductive state-dependent physiological and behavioral processes across vertebrates.

Publication Source (Journal or Book title)

Journal of Comparative Neurology

First Page

2499

Last Page

2522

COinS