Molecular genetics of cryptopleurine resistance in Saccharomyces cerevisiae: Expression of a ribosomal protein gene family

A. G. Paulovich, University of Washington, Seattle
J. R. Thompson, University of Washington, Seattle
J. C. Larkin, University of Washington, Seattle
Z. Li, University of Washington, Seattle
J. L. Woolford, University of Washington, Seattle

Abstract

The Saccharomyces cerevisiae CRY1 gene encodes the 40S ribosomal subunit protein rp59 and confers sensitivity to the protein synthesis inhibitor cryptopleurine. A yeast strain containing the cry1-Δ1::URA3 null allele is viable, cryptopleurine sensitive (Cry(S)), and expresses rp59 mRNA, suggesting that there is a second functional CRY gene. The CRY2 gene has been isolated from a yeast genomic library cloned in bacteriophage λ, using a CRY1 DNA probe. The DNA sequence of the CRY2 gene contains an open reading frame encoding ribosomal protein 59 that differs at five residues from rp59 encoded by the CRY1 gene. The CRY2 gene was mapped to the left arm of chromosome X, centromereproximal to cdc6 and immediately adjacent to ribosomal protein genes RPS24A and RPL46. Ribosomal protein 59 is an essential protein; upon sporulation of a diploid doubly heterozygous for cry1-Δ2::TRP1 cry2-Δ1::LEU2 null alleles, no spore clones containing both null alleles were recovered. Several results indicate that CRY2 is expressed, but at lower levels than CRY1: (1) Introduction of CRY2 on high copy plasmids into Cry(R) yeast of genotype cry1 CRY2 confers a Cry(S) phenotype. Transformation of these Cry(R) yeast with CRY2 on a low copy CEN plasmid does not confer a Cry(S) phenotype. (2) Haploids containing the cry1-Δ2::TRP1 null allele have a deficit of 40S ribosomal subunits, but cry2-Δ1::LEU2 strains have wild-type amounts of 40S ribosomal subunits. (3) CRY2 mRNA is present at lower levels than CRY1 mRNA. (4) Higher levels of β-galactosidase are expressed from a CRY1-lacZ gene fusion than from a CRY2-lacZ gene fusion. Mutations that alter or eliminate the last amino acid of rp59 encoded by either CRY1 or CRY2 result in resistance to cryptopleurine. Because CRY2 (and cry2) is expressed at lower levels than CRY1 (and cry1), the Cry(R) phenotype of cry2 mutants is only expressed in strains containing a cry1-Δ null allele.