Title

Carbohydrate structure of the major glycopeptide from human cold-insoluble globulin

Document Type

Article

Publication Date

1-1-1979

Abstract

Cold-insoluble globulin (CIg) is a member of a group of circulating and cell-associated, high-molecular-weight glycoproteins termed fibronectins. CIg was isolated from human plasma by affinity chromatography on gelatin-Sepharose. SDS-polyacrylamide gel electrophoresis of the purified glycoprotein gave a double band that migrated near myosin. The CIg glycopeptides were released by pronase digestion and isolated by chromatography on Sephadex G-50. Affinity chromatography of the major G-50 peak on Con A-Sepharose resulted in two fractions: one-third of the glycopeptides were unbound and two-thirds were weakly bound (WB). Sugar composition analysis of the unbound glycopeptides by GLC of the trimethylsilyl methyl glycosides gave the following molar ratios: sialic acid, 2.5; galactose, 3.0; N-acetylglucosamine, 4.9; and mannose, 3.0. Sugar composition analysis of the WB glycopeptides gave the following molar ratios: sialic acid, 1.7; galactose, 2.0; N-acetylglucosamine, 4.1; and mannose, 3.0. The WB CIg glycopeptides cochromatographed on Sephadex G-50 with WB transferrin glycopeptides giving an estimated molecular weight of 2,800. After degradation with neuraminidase alone or sequentially with β-galactosidase the CIg and transferrin glycopeptides again cochromatographed. Methylation linkage analysis of the intact and the partially degraded glycopeptides indicated that the carbohydrate structure of the major human CIg glycopeptide resembles that of the major glycopeptide transferrin.

Publication Source (Journal or Book title)

Journal of Supramolecular and Cellular Biochemistry

First Page

391

Last Page

399

This document is currently not available here.

Share

COinS