Biogeographical, biochemical and genetic differentiation among North American saccoglossids (Hemichordata; Enteropneusta; Harrimaniidae)

G. M. King, University of Maine
C. Giray, University of Maine
I. Kornfield, University of Maine

Abstract

Populations of two common enteropneusts, Saccoglossus bromophenolosus King et al., 1994 and S. kowalevskii (Agassiz 1873) were sampled between 1991 and 1993 from the southern and northern extremes of their respective ranges: Nova Scotia/Maine and Padilla Bay, Washington for S. bromophenolosus and Maine/South Carolina for S. kowalevskii. Though previously considered a single species, the two taxa were clearly distinct biochemically and genetically. Four of five allozyme loci were diagnostic and indicative of differentiation at the species level. Sequence divergence (27%) of a portion of the mitochondrial 16S rRNA gene suggests that the two taxa have been genetically isolated for a considerable time; hybridization was not evident in sympatric populations. Both taxa contained high concentrations of bromoorganics. The constant association of bromophenols and bromoindoles with S. bromophenolosus and bromopyrroles with S. kowalevskii when they occur sympatrically indicates that bromoorganic contents were genetically and not environmentally determined. Consistent associations between external morphology and bromoorganic contents for additional saccoglossid species support the use of bromoorganics as indices of evolutionary clades in the Enteropneusta. © 1995 Springer-Verlag.