Title

Soil-atmosphere CO exchanges and microbial biogeochemistry of CO transformations in a Brazilian agricultural ecosystem

Document Type

Article

Publication Date

9-1-2002

Abstract

Although anthropogenic land use has major impacts on the exchange of soil and atmosphere gas in general, relatively little is known about its impacts on carbon monoxide. We compared soil-atmosphere CO exchanges as a function of land use, crop type, and tillage treatment on an experimental farm in Parãna, Brazil, that is representative of regionally important agricultural ecosystems. Our results showed that cultivated soils consumed CO at rates between 3 and 6 mg of CO m-2 day-1, with no statistically significant effect of tillage method or crop. However, CO exchange for a pasture soil was near zero, and an unmanaged woodlot emitted CO at a rate of 9 mg of CO m-2 day-1. Neither nitrite, aluminum sulfate, nor methyl fluoride additions affected CO consumption by tilled or untilled soils from soybean plots, indicating that CO oxidation did not depend on ammonia oxidizers and that CO oxidation patterns differed in part from patterns reported for forest soils. The apparent Km for CO uptake, 5 to 11 ppm, was similar to values reported for temperate forest soils; Vmax values, approximately 1 μg of CO g (dry weight)-1 h-1, were comparable for woodlot and cultivated soils in spite of the fact that the latter consumed CO under ambient conditions. Short-term (24-h) exposure to elevated levels of CO (10% CO) partially inhibited uptake at lower concentrations (i.e., 100 ppm), suggesting that the sensitivity to CO of microbial populations that are active in situ differs from that of known carboxydotrophs. Soil-free soybean and corn roots consumed CO when they were incubated with 100-ppm concentrations and produced CO when they were incubated with ambient concentrations. These results document for the first time a role for cultivated plant roots in the dynamics of CO in an agricultural ecosystem.

Publication Source (Journal or Book title)

Applied and Environmental Microbiology

First Page

4480

Last Page

4485

This document is currently not available here.

Share

COinS