Title

Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment

Document Type

Article

Publication Date

12-16-2004

Abstract

Since the recognition of prokaryotes as essential components of the oceanic food web1, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured2 or have only been grown to low densities in sea water3,4. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise ∼10-20% of coastal and oceanic mixed-layer bacterioplankton2,5,6,7. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.

Publication Source (Journal or Book title)

Nature

First Page

910

Last Page

913

This document is currently not available here.

Share

COinS