Sporadic amplification of ID elements in rodents

David H. Kass, University Medical Center New Orleans
Joomyeong Kim, University Medical Center New Orleans
Prescott L. Deininger, University Medical Center New Orleans

Abstract

ID sequences are members of a short interspersed element (SINE) repetitive DNA family within the rodent genome. The copy number of individual ID elements varies by up to three orders of magnitude between species. This amplification has been highly sporadic in the order Rodentia and does not follow any phylogenetic trend. Using library screening and dot-blot analysis, we estimate there are 25,000 copies of ID elements in the deer mouse, 1,500 copies in the gerbil (both cricetid rodents), and 60,000 copies of either ID or ID-like elements in a sciurid rodent (squirrel). By dot-blot analysis, we estimate there are 150,000, 4,000, 1,000, and 200 copies of ID elements in the rat, mouse, hamster, and guinea pig, respectively (which is consistent with previous reports) and 200 copies in the hystricognath rodent, nutria. Therefore, a rapid amplification took place not only after the divergence of rat and mouse but also following the deer mouse (Peromyscus) and hamster split, with no evidence of increased amplifications in hystricognath rodents. No notable variations of sequences from the BC1 genes of several myomorphic rodents were observed that would possibly explain the varied levels of ID amplification. We did observe subgenera and species-group-specific variation in the ID core sequence of the BC1 gene within the genus Peromyscus. Sequence analysis of cloned ID elements in Peromyscus show most ID elements in this genus arose prior to Peromyscus subgenus divergence. Correspondence of the consensus sequence of individual ID elements in gerbil and deer mouse further confirms BC1 as a master gene in ID amplification. Several possible mechanisms responsible for the quantitative variations are explored.