Document Type

Article

Publication Date

1-1-2014

Abstract

© 2014, Springer-Verlag Berlin Heidelberg. Coral species are difficult to discern because of their morphological plasticity, long generation times, and slow rates of mitochondrial DNA evolution. Among Caribbean representatives of the genus Porites are three named species (P. divaricata, P. furcata, and P. porites) with branching colony morphologies whose validity as genetically isolated species has been debated. We present sequence data from the mitochondrial control region, nuclear ITS, and nine single-copy nuclear loci for the Caribbean Porites and a related eastern Pacific species. mtDNA sequences were nearly invariant among the three branching species and their crustose sister P. branneri, and ITS sequences from these four were intermingled. An information theoretic analysis provided no support for upholding the three named Caribbean branching species. Both a clustering analysis and an analysis of molecular variance showed that sequence variation from the three branching forms is partitioned more by geography than by taxonomy. Multi-locus coalescent phylogenetic analysis provided a calibrated estimate for the nuclear DNA substitution rate (0.14 % Ma−1) close to that for other corals. Because no generalities have emerged from genetic investigations of the validity of morphologically defined coral species, the use of single-copy nuclear data is likely to be important in testing problematic species designations.

Publication Source (Journal or Book title)

Coral Reefs

First Page

1019

Last Page

1030

COinS