Title

AMPA and NMDA receptors expressed by differentiating Xenopus spinal neurons

Document Type

Article

Publication Date

1-1-1998

Abstract

N-methyl-D-aspartate (NMDA) receptors are often the first ionotropic glutamate receptors expressed at early stages of development and appear to influence neuronal differentiation by mediating Ca2+ influx. Although less well studied, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors also can generate Ca2+ elevations and may have developmental roles. We document the presence of AMPA and NMDA class receptors and the absence of kainate class receptors with whole cell voltage-clamp recordings from Xenopus embryonic spinal neurons differentiated in vitro. Reversal potential measurements indicate that AMPA receptors are permeable to Ca2+ both in differentiated neurons and at the time they first are expressed. The P(Ca)/P(monocation) of 1.9 is close to that of clone Ca2+-permeable AMPA receptors expressed in heterologous systems. Ca2+ imaging reveals that Ca2+ elevations are elicited by AMPA or NMDA in the absence of Mg2+. The amplitudes and durations of these agonist-induced Ca2+ elevations are similar to those of spontaneous Ca2+ transients known to act as differentiation signals in these cells. Two sources of Ca2+ amplify AMPA- and NMDA-induced Ca2+ elevations. Activation of voltage-gated Ca2+ channels by AMPA- or NMDA-mediated depolarization contributes ~15 or 30% of cytosolic Ca2+ elevations, respectively. Activation of either class of receptor produces elevations of Ca2+ that elicit further release of Ca2+ from thapsigargin-sensitive but ryanodine-insensitive stores, contributing an additional ~30% of Ca2+ elevations. Voltage-clamp recordings and Ca2+ imaging both show that these spinal neurons express functional AMPA receptors soon after neurite initiation and before expression of NMDA receptors. The Ca2+ permeability of AMPA receptors, their ability to generate significant elevations of [Ca2+](i), and their appearance before synapse formation position them to play roles in neural development. Spontaneous release of agonists from growth cones is detected with glutamate receptors in outside- out patches, suggesting that spinal neurons are early, nonsynaptic sources of glutamate that can influence neuronal differentiation in vivo.

Publication Source (Journal or Book title)

Journal of Neurophysiology

First Page

2986

Last Page

2998

This document is currently not available here.

Share

COinS