Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium

G. G. Goss, University of Alberta
S. Adamia, University of Alberta
F. Galvez, University of Alberta

Abstract

Fluorescently labeled peanut lectin agglutinin (PNA-FITC) was used to identify a subtype of mitochondria-rich (MR) cells in the gills of freshwater rainbow trout. In situ binding of PNA-FITC was visualized by inverted fluorescence microscopy and found to bind to cells on the trailing edge of the filament epithelium as demonstrated by differential interference contrast optics. The amount of PNA-FITC binding on the filament epithelium increased with cortisol pretreatment concomitant with an increased chloride cell fractional area as demonstrated by scanning electron microscopy. Dispersed gill cells were isolated by trypsinization and separated using a discontinuous Percoll density gradient. Cells migrating to the 1.06-1.09 g/ml interface were found to be MR as demonstrated by staining with the vital mitochondrial dye 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide and transmission electron microscopy (TEM). However, only ∼40% of the MR cells were found to bind PNA-FITC. Cortisol pretreatment increased the relative numbers of MR cells isolated from the dispersed gill cell population, but the relative proportions of PNA binding cells remained unchanged. Ultrastructural analysis of isolated cells in the TEM demonstrated that the MR cell fraction was comprised of a mixed population of chloride cells and pavement cells.