Document Type


Publication Date



© 2015 Elsevier Inc. All rights reserved. The human mitochondrial outer membrane protein mitoNEET is a newly discovered target of the type 2 diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane α helix tethered to the mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox-active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, the specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase from reducing the mitoNEET [2Fe-2S] clusters, indicating that the redox-active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals.

Publication Source (Journal or Book title)

Free Radical Biology and Medicine

First Page


Last Page