Title

Hybrid Synthetic-Biological Hydrogel System for Adipose Tissue Regeneration

Document Type

Article

Publication Date

11-1-2018

Abstract

Hydrogels are promising scaffolds for adipose tissue regeneration. Currently, the incorporation of bioactive molecules in hydrogel system is used, which can increase the cell proliferation rate or improve adipogenic differentiation performance of stromal stem cells but often suffers from high expense or cytotoxicity because of light/thermal curing used for polymerization. In this study, decellularized adipose tissue is incorporated, at varying concentrations, with a thiol-acrylate fraction that is then polymerized to produce hydrogels via a Michael addition reaction. The results reveal that the major component of isolated adipose-derived extracellular matrix (ECM) is Collagen I. Mechanical properties of ECM polyethylene glycol (PEG) are not negatively affected by the incorporation of ECM. Additionally, human adipose-derived stem cells (hASCs) are encapsulated in ECM PEG hydrogel with ECM concentrations varying from 0% to 1%. The results indicate that hASCs maintained the highest viability and proliferation rate in 1% ECM PEG hydrogel with most lipids formation when cultured in adipogenic conditions. Furthermore, more adipose regeneration is observed in 1% ECM group with in vivo study by Day 14 compared to other ECM PEG hydrogels with lower ECM content. Taken together, these findings suggest the ECM PEG hydrogel is a promising substitute for adipose tissue regeneration applications.

Publication Source (Journal or Book title)

Macromolecular bioscience

First Page

e1800122

COinS