The cytoplasmic terminus of Kaposi's sarcoma-associated herpesvirus glycoprotein B is not essential for virion egress and infectivity

Document Type


Publication Date



Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded glycoprotein B (gB) is an important determinant of viral infectivity and virion egress. A small interfering RNA (siRNA)-based strategy was devised to inhibit KSHV gB gene expression. Transient cotransfection of plasmids constitutively expressing gB and anti-gB siRNAs in 293 cells substantially inhibited gB mRNA levels and protein production. Similarly, transient expression of siRNAs into the primary effusion lymphoma cell line BCBL-1 caused a substantial reduction of gB transcripts and protein synthesis. TaqMan real-time PCR assays against the lytic KSHV gene ORF59 and infectivity assays on 293 cells were employed to assess the effect of inhibiting gB synthesis on virion egress from BCBL-1 cells and infectivity on 293 cells, respectively. These experiments showed that gB was essential for virion egress and infectivity. Transfection of a codon-optimized gB gene with the first 540 nucleotides altered, and therefore not recognized by anti-gB siRNAs that target the native but not the codon-optimized sequence, efficiently rescued virion egress and infectivity in BCBL-1 cells in the presence of siRNAs inhibiting wild-type gB expression. To assess the role of the cytoplasmic domain of gB in virion egress, mutant gB genes were generated specifying carboxyl terminal truncations of 25 and 58 amino acids disrupting two prominent predicted α-helical domains associated with virus-induced cell fusion. A third truncation removed the entire predicted cytoplasmic terminus of 84 amino acids, while a fourth truncation removed 110 amino acids, including the terminal most hydrophobic, intramembrane anchoring sequence. Virion egress experiments revealed that all truncated gBs facilitated virion egress from BCBL-1 cells, with the exception of the largest 110-amino-acid truncation, which removed the gB anchoring sequence. Importantly, the gB truncation that removed the entire predicted cytoplasmic domain increased virion egress, suggesting the presence of a egress regulation domain located proximal to the intramembrane sequence within the cytoplasmic domain of gB. All supernatant virions were infectious on 293 cells, indicating that the carboxyl terminus of gB is not essential for either virion egress or virus infectivity. Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Publication Source (Journal or Book title)

Journal of Virology

First Page


Last Page


This document is currently not available here.