Title

Kaposi's sarcoma-associated herpesvirus glycoproteins B and K8.1 regulate virion egress and synthesis of vascular endothelial growth factor and viral interleukin-6 in BCBL-1 cells

Document Type

Article

Publication Date

2-1-2010

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) viral glycoproteins play important roles in the infectious life cycle and have been implicated in KSHV-associated endothelial cell transformation, angiogenesis, and KS-induced malignancies. KSHV-associated primary effusion lymphomas (PELs) secrete high levels of vascular endothelial growth factor (VEGF) and viral interleukin-6 (vIL-6) in vitro and VEGF, vIL-6, and basic-fibroblast growth factor (b-FGF) in mouse xenografts. KSHV-encoded glycoproteins B (gB) and K8.1 stimulate VEGF secretion, most likely mediated by direct or indirect binding to cell surface receptors, including the gB-specific αVβ3 and α3β1 integrins. In this study, the short interfering RNA (siRNA)-mediated inhibition of either gB or K8.1 transcription by anti-gB or -K8.1 siRNAs caused a substantial reduction in virion egress and a decrease in both vIL-6 and VEGF production. Similarly, the treatment of BCBL-1 cells with anti-gB or anti-K8.1 antibodies caused a substantial reduction in vIL-6 and VEGF production. Codon-optimized versions of either wild-type gB, mutant gB having the RGD amino acid motif changed to RAA, or K8.1 efficiently rescued virion egress and VEGF and vIL-6 production. These results suggest that the binding of gB via its RGD motif to integrin receptors was not responsible for the observed gB-associated regulation of VEGF and vIL-6 transcription. Conditioned medium collected from BCBL-1 cells transfected with anti-gB and anti-K8.1 siRNAs or treated with anti-gB and anti-K8.1 antibodies exhibited a significantly reduced ability to induce the formation of the capillary network of endothelial cells compared to the ability of medium from mock-infected BCBl-1 cells. Furthermore, medium obtained from BCBL-1 cells expressing smaller amounts of gB and K8.1 produced a substantial reduction in endothelial cell migration in a vertical migration assay compared to that of control medium containing wild-type levels of gB and K8.1. These results suggest a functional linkage between gB/K8.1 synthesis and VEGF/vIL-6 transcriptional regulation via paracrine and/or autocrine signaling pathways. Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Publication Source (Journal or Book title)

Journal of Virology

First Page

1704

Last Page

1714

This document is currently not available here.

Share

COinS