Document Type

Article

Publication Date

1-1-2000

Abstract

Respiratory tract infections with viruses and Pasteurella spp. were determined sequentially among 26 cattle that died during two severe epizootics of shipping fever pneumonia. Nasal swab and serum samples were collected prior to onset of the epizootics, during disease progression, and after death, when necropsies were performed and lung samples were collected. Eighteen normal control cattle also were sampled at the beginning of the epizootics as well as at weekly intervals for 4 weeks. Respiratory bovine coronaviruses (RBCV) were isolated from nasal secretions of 21 and 25 cattle before and after transport. Two and 17 cattle nasally shed Pasteurella spp. before and after transport, respectively. RBCV were isolated at titers of 1 x 103 to 1.2 x 107 PFU per g of lung tissue from 18 cattle that died within 7 days of the epizootics, but not from the lungs of the remaining cattle that died on days 9 to 36. Twenty-five of the 26 lung samples were positive for Pasteurella spp., and their CFU ranged between 4.0 x 105 and 2.3 x 109 per g. Acute and subacute exudative, necrotizing lobar pneumonia characterized the lung lesions of these cattle with a majority of pneumonic lung lobes exhibiting fibronecrotic and exudative changes typical of pneumonic pasteurellosis, but other lung lobules had histological changes consisting of bronchiolitis and alveolitis typical of virus-induced changes. These cattle were immunologically naive to both infectious agents at the onset of the epizootics, but those that died after day 7 had rising antibody titers against RBCV and Pasteurella haemolytica. In contrast, the 18 clinically normal and RBCV isolation-negative cattle had high hemagglutinin inhibition antibody titers to RBCV from the beginning, while their antibody responses to P. haemolytica antigens were delayed. Evans' criteria for causation were applied to our findings because of the multifactorial nature of shipping fever pneumonia. This analysis identified RBCV as the primary inciting cause in these two epizootics. These viruses were previously not recognized as a causative agent in this complex respiratory tract disease of cattle.

Publication Source (Journal or Book title)

Journal of Clinical Microbiology

First Page

3291

Last Page

3298

COinS