The influence of dietary selenium on common indicators of selenium status and liver glutathione peroxidase-1 messenger ribonucleic acid.

Document Type


Publication Date



The objective of this research was to determine the influence of dietary Se on various indicators of Se status and relative liver glutathione peroxidase 1 (GPx-1) messenger RNA (mRNA) levels in growing Holstein bull calves. Calves (n = 14, 7/diet) were started 28 d after birth on a Se-adequate (SeA) or Se-deficient diet (SeD) and maintained on the diet until 180 d of age. Blood samples were taken from each calf for determination of erythrocyte GPx-1 and plasma GPx-3 activities and plasma Se concentration on d 28 of age, every 28 d thereafter, and at 180 d of age. To assess liver Se and GPx-1 mRNA, 3 calves were first killed at d 21 of age for baseline (BSL) measurements, and 4 calves from each treatment were killed at trial conclusion. Feed intake and ADG were not affected (P = 0.62) by dietary Se concentrations. However, liver Se concentration was greater (P < 0.05) for BSL calves and SeA calves than SeD calves, but no difference (P = 0.68) was observed between BSL calves and SeA calves. Plasma Se was greater for SeA calves (P < 0.01) than for SeD calves by d 56 of age. The GPx-1 activity was greater in SeA calves (P < 0.01) by d 84 of age, whereas GPx-3 activity was greater in SeA calves, but not until d 180 of age (P < 0.01). There was a 50% decrease in GPx-1 mRNA for the SeD calves (P < 0.05) compared with SeA calves. Thus, relative GPx-1 mRNA transcript level is reflective of Se status in the bovine. Furthermore, 152 d on a semi-purified, SeD diet is adequate to create a Se deficiency in growing Holstein bull calves started on a SeD diet at 28 d of age.

Publication Source (Journal or Book title)

Journal of animal science

First Page


Last Page


This document is currently not available here.