Identifier

etd-07102008-140625

Degree

Master of Science in Civil Engineering (MSCE)

Department

Civil and Environmental Engineering

Document Type

Thesis

Abstract

Mangrove trees play an important role in the maintenance and sustainability of coastal wetlands due to their ability to adapt and survive in a wide range of saline and tidal conditions. Hydrologic processes (e.g., inundation frequency) and salinity are important regulators controlling the growth and productivity of mangrove forests. To quantify how changes in landscape-level hydrology will influence these regulators in mangrove forests, the hydrology model (HYMAN) was applied to three sites with distinct tidal forcings along the Shark River estuary in the Everglades National Park. HYMAN model uses mass balance equation to determine daily water and salt budgets as the combined effects of inputs from precipitation and tide, and losses through evapotranspiration, seepage, and runoff. Statistical analysis of the surface water depths in each forest was conducted to develop relations as a function of channel water elevations. Other model inputs such as evapotranspiration and seepage were calculated from the observed data. The simulated values of pore water salinity for each site can reasonably match the corresponding observation trends and consist with its distance to the estuary mouth.

Date

2008

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Willson, Clinton S

Share

COinS