Master of Science (MS)


Oceanography and Coastal Sciences

Document Type



Global weather changes have become a matter of grave concern in hurricane prone areas as intensities of hurricanes are observed to be increasing every year, necessitating improved monitoring capabilities. NASA’s QuikSCAT satellite sensor has provided significant support in analyzing and forecasting winds for the past 8 years. In this study, the performance of QuikSCAT products, including JPL’s latest L2B 12.5km swath winds, was evaluated against buoy-measured winds in the Gulf of Mexico. The long-term study period was 1/2005 – 2/2007. The Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS) was also assessed. The regression analyses showed very good results for QuikSCAT products, with the best results obtained from L2B winds. R2 values for moderate wind speeds were 0.75 and 0.89, 0.88 and 0.93, 0.66 and 0.77 for speed and direction and for L3, L2B and COAMPS respectively. The National Weather Product (NWP) model winds provided in the L2B dataset were also studied. Hurricanes that took place from 2002 to 2006 were studied individually to obtain regressions of QuikSCAT and COAMPS versus buoys for those events. The correlations were very high indicating that QuikSCAT is at par with buoys during hurricanes. These measurements were compared with the NHC best track analyses to determine the accuracy and found to be almost half those obtained by NHC, possibly due to rain contamination. Sea Surface Height Anomaly (SSHA) measurements by Jason-1 and sea surface temperature (SST) measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and GOES-12 (Geostationary) were compared with wind fields during hurricanes to study the effects of the Loop Current and Warm Core Rings on the intensification of the hurricanes. A preliminary study was conducted in which the regions of enhanced wind speeds were observed by studying the longitudinal and latitudinal transects across the hurricane for two hurricanes, namely Hurricanes Ivan and Katrina. This study would act as a precursor to further analysis of the radius of maximum wind and critical wind radii.



Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Eurico J. D'Sa