Identifier

etd-06132006-102125

Degree

Master of Science in Electrical Engineering (MSEE)

Department

Electrical and Computer Engineering

Document Type

Thesis

Abstract

A computationally efficient algorithm using the expectation-maximization (EM) algorithm for multiple wideband source localization in the near field of a sensor array/area is addressed in this thesis. Our idea is to decompose the observed sensor data, which is a superimposition of multiple sources, into the individual components in the frequency domain and then estimate the corresponding location parameters associated with each component separately. Instead of the conventional alternating projection (AP) method, we propose to adopt the EM algorithm in this work; our new method involves two steps, namely Expectation (E-step) and Maximization (M-step). In the E-step, the individual incident source waveforms are estimated. Then, in the M-step, the maximum likelihood estimates of the source location parameters are obtained. These two steps are executed iteratively and alternatively until the pre-defined convergence is reached. The computational complexity comparison between our proposed EM algorithm and the existing AP scheme is investigated. It is shown through Monte Carlo simulations that the computational complexity of the proposed EM algorithm is significantly lower than that of the existing AP algorithm.

Date

2006

Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Hsiao-Chun Wu

Share

COinS