Identifier

etd-04052007-121331

Degree

Master of Science (MS)

Department

Civil and Environmental Engineering

Document Type

Thesis

Abstract

Dynamically varying waste gas concentrations pose challenges to the operation and design of air pollution control techniques such as biofilters. Although design approaches are becoming well established for biofilters treating gases containing VOC concentrations that are constant as a function of time, many industrial processes emit gas streams contaminated with volatile organic compounds at concentrations that fluctuate with time. Application of an effective load equalization technique could eliminate some challenges associated with fluctuating pollutant concentrations. Recent research has demonstrated that granular activated carbon (GAC) can serve as a passively controlled system to provide load-equalization as a pre-treatment prior to biofiltration. Research described in this thesis was conducted to evaluate the effect of cycle length and fraction of time of contaminant loading on the degree of load equalization achieved by GAC columns subjected to intermittent pollutant loading. Columns filled with Calgon BPL 4 x 6 mesh GAC were experimentally tested with influent toluene concentrations of 250 ppmv and 1000 ppmv at cycle lengths as short as 6 hours and as long as 48 hours. The fraction of time that toluene was loaded to the columns ranged from 1/2 to 1/6 of the total cycle length. During non-loading intervals, contaminated-free air flowed through the columns at the same rate as contaminated air was supplied during loading intervals. Results revealed that passively operated GAC columns could provide effective load equalization by temporarily accumulating toluene during periods of high loading and subsequently desorb toluene during periods of no loading. Results also showed that the degree of load equalization increased as cycle length decreased, the fraction of time toluene was loaded decreased, and the influent contaminant concentration decreased. A pore and surface diffusion model (PSDM) was used to simulate the degree of load dampening achieved by GAC columns under various discontinuous loading conditions. The PSDM was able to predict the degree of load equalization achieved by each experimentally tested cyclic loading scenario within a reasonable degree of accuracy.

Date

2007

Document Availability at the Time of Submission

Student has submitted appropriate documentation to restrict access to LSU for 365 days after which the document will be released for worldwide access.

Committee Chair

William M. Moe

Share

COinS