Identifier

etd-04042016-165521

Degree

Master of Science in Biological and Agricultural Engineering (MSBAE)

Department

Biological and Agricultural Engineering

Document Type

Thesis

Abstract

Abstract Huge progress has been made in the development of three dimensionally printed tissue structures. With the use of cells, three dimensional printers, and CAD drawing software, donor identical structures can be fabricated. However, cell scaffolds currently lack significant mechanical integrity which can result in reduced cellular survival, attachment, and nutrient delivery. For this reason, multiple strategies have been developed to increase and improve mechanical stability within engineered constructs without having to sacrifice cell viability. The hypothesis of this paper was that incorporating Perfluorotributylamine (PFTBA), a greenhouse gas, with single walled carbon nanotubes (SWCNT), a allotrope of carbon with a cylindrical nanostructure, into an alginate scaffold will not only increase mechanical integrity but also cell survival. The following objectives were proposed: 1. Fabricate and characterize cell laden scaffolds of alginate and 2. Assess the addition of perfluorotributylamine and various concentrations of carbon nanotubes inside of cell laden scaffolds of alginate. Three configurations of perfluorotributylamine and carbon nanotubes were explored in an effort to maximize mechanical properties and cytocompatibility. Perfluorotributylamine was combined with gelatin from bovine skin and phosphate buffered solution to form a PFTBA emulsion. This emulsion was added to each alginate scaffold to encompass 5% of the entire alginate scaffold. Single walled carbon nanotubes were added in increasing concentrations to have four scaffolds, one control, 0 µg/ml, .1 µg/ml, and 1 µg/ml. The results of this study indicate that the configuration of 5% PFTBA emulsion + 1 µg/ml SWCNT + alginate, provided the best cell viability results; Picogreen fluorescence of 8532, excellent viability in live/dead stain, and sufficient morphological features while the control scaffold, containing alginate only, provided the best mechanical properties after a 7 day period. The results contradict the hypothesis that mechanical properties will increase with increasing SWCNT concentration, but support the hypothesis of improved cell viability with the incorporation of PFTBA emulsion to increasing SWCNT concentration.

Date

2016

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Hayes, Daniel

Included in

Engineering Commons

Share

COinS