Identifier

etd-11052004-145157

Degree

Master of Science in Electrical Engineering (MSEE)

Department

Electrical and Computer Engineering

Document Type

Thesis

Abstract

The electric shock absorber is a device that converts the kinetic energy of an oscillating object into electric energy. This kinetic energy is normally dumped in a form of thermal energy in a conventional, mechanical shock absorber. The electric shock absorber consists of a permanent magnet linear synchronous generator (PMLSG), a spring, and an electric energy accumulator. The major goal of the project is to design and analyze the operation of an electric shock absorber. In order to define the initial requirements that the electric shock absorber has to satisfy, the construction and performance of currently used shock absorbers were studied first. With respect to this study, five versions of PMLSG were analyzed qualitatively and the most suitable design was selected. The next subject was the design calculations for the chosen type of PMLSG. To determine the dimensions as well as the parameters of its magnetic and electric circuits, the calculation program was written using MATLAB. The designed PMLSG was studied under steady-state conditions to determine its electromechanical characteristics. For this purpose the mathematical model of the generator was proposed and a program was written in MATLAB that allowed calculating its output parameters under different operation conditions. The PMLSG operates practically in dynamic conditions within the whole system: generator – spring – controlled rectified – battery. The dynamic model of the entire system of the electric shock absorber was proposed and described using the voltage equilibrium equation for the electrical port and the force equilibrium equation for the mechanical port. On the basis of these equations, a block diagram was built and simulations were carried out by using MATLAB-SIMULINK. The performance of the electric shock absorber obtained from simulations was compared with mechanical parameters of the mechanical shock absorber. The conclusion obtained indicates that the electric shock absorber is able to store part of the recovered energy in the battery. However, a great part of this energy is lost in the generator resistance and in the external resistance, which is necessary to be connected to the generator output terminal in order to obtain the desire electromechanical parameters.

Date

2004

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Ernest Mendrela

Share

COinS