Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Physics and Astronomy

First Advisor

Richard W. Haymaker


The confinement property of quarks is still one of the puzzles of today's physics. Although QCD is believed to accurately describe the interaction between quarks, due to the peculiar nature of the theory we are still unable to prove that it confines the quarks. Most analytical efforts in QCD are based on perturbative techniques which are useless in studying confinement. Lattice gauge theory enables us to get non-perturbative results. We use lattice techniques to investigate one of the proposed mechanisms of quark confinement, namely the center vortex idea. We first present a cursory introduction to lattice theory and the methods used to detect confinement on the lattices. We then show how the center vortices are suppose to produce confinement using center vortices to study Z2 lattice gauge theory. A review of the current studies regarding the idea of center vortices follows. The last chapter is dedicated to studying a particular definition of center vortices due to Tomboulis. We show how to implement this definition of vortices in numerical simulations and use numerical simulations to check the assumptions underlying the formalism. We also compare Tomboulis definition with other methods used to identify vortices on lattice.