Degree

Doctor of Philosophy (PhD)

Department

Music

Document Type

Dissertation

Abstract

Interdependent collaboration is a system of live musical performance in which performers can directly manipulate each other’s musical outcomes. While most collaborative musical systems implement electronic communication channels between players that allow for parameter mappings, remote transmissions of actions and intentions, or exchanges of musical fragments, they interrupt the energy continuum between gesture and sound, breaking our cognitive representation of gesture to sound dynamics.

Physics-based virtual instruments allow for acoustically and physically plausible behaviors that are related to (and can be extended beyond) our experience of the physical world. They inherently maintain and respect a representation of the gesture to sound energy continuum.

This research explores the design and implementation of custom physics-based virtual instruments for realtime interdependent collaborative performance. It leverages the inherently physically plausible behaviors of physics-based models to create dynamic, nuanced, and expressive interconnections between performers. Design considerations, criteria, and frameworks are distilled from the literature in order to develop three new physics-based virtual instruments and associated compositions intended for dissemination and live performance by the electronic music and instrumental music communities. Conceptual, technical, and artistic details and challenges are described, and reflections and evaluations by the composer-designer and performers are documented.

Committee Chair

Berdahl, Edgar

DOI

10.31390/gradschool_dissertations.4918

Share

COinS