Identifier

etd-10292010-133201

Degree

Doctor of Philosophy (PhD)

Department

Chemistry

Document Type

Dissertation

Abstract

After brief overviews of low-abundance cell selection techniques in chapter 1 and circulating tumor cells in chapter 2, this dissertation initially focuses on the development of aptamer incorporated high-throughput microfluidic techniques to select rare circulation prostate cancer cells (LNCaP) directly from whole blood with subsequent quantification of these rare cells using a non-labeling approach. Then, I extended the technology to environmental samples in an effort around time, sensitivity, and portability of traditional groundwater assessment. As a model bio- pathogen, E. coli O157:H7 was chosen due to its toxicity and its adverse impact on recreational waters. Low-abundance (<100 cells mL-1) E. coli O157:H7 cells were isolated and enriched from environmental water samples using a microfluidic chip that its capture beds were covalently decorated with E.coli O157:H7 specific polyclonal antibodies. The selected cells were enumerated using RT-qPCR technique. Finally, I have integrated HTMSU with electrokinetic enrichment microfluidic unit for performance of single recombinant low-abundance CTC cell-based assay. A series of analytical processes were carried out, including immunoaffinity selection of rare CTCs, quantification of selected cells via conductivity impedance and electrophoretic enrichment of selected cells for PCR/LDR/CE interrogation for detection of low-abundance point mutations in genomic DNA.

Date

2010

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Soper, Steven

Included in

Chemistry Commons

Share

COinS