Identifier

etd-11052013-042107

Degree

Doctor of Philosophy (PhD)

Department

Civil and Environmental Engineering

Document Type

Dissertation

Abstract

The complex siliciclastic aquifer system underneath the Baton Rouge area, Louisiana, USA, is fluvial in origin. The east-west trending Baton Rouge fault and Denham Springs-Scotlandville fault cut across East Baton Rouge Parish and play an important role in groundwater flow and aquifer salinization. To better understand the salinization underneath Baton Rouge, it is imperative to study the hydrofacies architecture and the groundwater flow field of the Baton Rogue aquifer-fault system. This is done through developing multiple detailed hydrofacies architecture models and multiple groundwater flow models of the aquifer-fault system, representing various uncertain model propositions. The hydrofacies architecture models focus on the Miocene-Pliocene depth interval that consists of the “1,200-foot” sand, “1,500-foot” sand, “1,700-foot” sand and the “2,000-foot” sand, as these aquifer units are classified and named by their approximate depth below ground level. The groundwater flow models focus only on the “2,000-foot” sand. The study reveals the complexity of the Baton Rouge aquifer-fault system where the sand deposition is non-uniform, different sand units are interconnected, the sand unit displacement on the faults is significant, and the spatial distribution of flow pathways through the faults is sporadic. The identified locations of flow pathways through the Baton Rouge fault provide useful information on possible windows for saltwater intrusion from the south. From the results we learn that the “1,200-foot” sand, “1,500-foot” sand and the “1,700-foot” sand should not be modeled separately since they are very well connected near the Baton Rouge fault, while the “2,000-foot” sand between the two faults is a separate unit. Results suggest that at the “2,000-foot” sand the Denham Springs-Scotlandville fault has much lower permeability in comparison to the Baton Rouge fault, and that the Baton Rouge fault plays an important role in the aquifer salinization.

Date

2013

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Tsai, Frank

DOI

10.31390/gradschool_dissertations.3008

Share

COinS