Doctor of Philosophy (PhD)


Electrical and Computer Engineering

Document Type



Stability, protection, and operational restrictions are important factors to be taken into account in a proper integration of distributed energy. The objective of this research is presenting advanced controllers for small-scale power systems with penetration of renewable energy sources resources to ensure stable operation after the network disturbances. Power systems with distributed energy resources are modeled and controlled through applying nonlinear control methods to their power electronic interfaces in this research. The stability and control of both ac and dc systems have been studied in a multi-source framework. The dc distribution system is represented as a class of interconnected, nonlinear discrete-time systems with unknown dynamics. It comprises several dc sources, here called subsystems, along with resistive and constant-power loads (which exhibit negative resistance characteristics and reduce the system stability margins.) Each subsystem includes a dc-dc converter (DDC) and exploits distributed energy resources (DERs) such as photovoltaic, wind, etc. Due to the power system frequent disturbances this system is prone to instability in the presence of the DDC dynamical components and constant-power loads. On the other hand, designing a centralized controller may not be viable due to the distance between the subsystems (dc sources.) In this research it is shown that the stability of an interconnected dc distribution system is enhanced through decentralized discrete-time adaptive nonlinear controller design that employs neural networks (NNs) to mitigate voltage and power oscillations after disturbances have occurred. The ac power system model is comprised of conventional synchronous generators (SGs) and renewable energy sources, here, called renewable generators (RGs,) via grid-tie inverters (GTI.) A novel decentralized adaptive neural network (NN) controller is proposed for the GTI that makes the device behave as a conventional synchronous generator. The advantage of this modeling is that all available damping controllers for synchronous generator, such as AVR (Automatic Voltage Regulator) + PSS (Power System Stabilizer), can be applied to the renewable generator. Simulation results on both types of grids show that the proposed nonlinear controllers are able to mitigate the oscillations in the presence of disturbances and adjust the renewable source power to maintain the grid voltage close to its reference value. The stability of the interconnected grids has been enhanced in comparison to the conventional methods.



Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Mehraeen, Shahab