Identifier

etd-1029103-101200

Degree

Doctor of Philosophy (PhD)

Department

Physics and Astronomy

Document Type

Dissertation

Abstract

The purpose of this dissertation is to investigate the properties of self-assembled monolayers, particularly alkanethiols and Poly (ethylene glycol) terminated alkanethiols. These simulations are based on realistic interatomic potentials and require scalable and portable multiresolution algorithms implemented on parallel computers. Large-scale molecular dynamics simulations of self-assembled alkanethiol monolayer systems have been carried out using an all-atom model involving a million atoms to investigate their structural properties as a function of temperature, lattice spacing and molecular chain-length. Results show that the alkanethiol chains tilt from the surface normal by a collective angle of 25o along next-nearest neighbor direction at 300K. At 350K the system transforms to a disordered phase characterized by small tilt angle, flexible tilt direction, and random distribution of backbone planes. With increasing lattice spacing, a, the tilt angle increases rapidly from a nearly zero value at a = 4.7Å to as high as 34 o at a = 5.3Å at 300K. We also studied the effect of end groups on the tilt structure of SAM films. We characterized the system with respect to temperature, the alkane chain length, lattice spacing, and the length of the end group. We found that the gauche defects were predominant only in the tails, and the gauche defects increased with the temperature and number of EG units. Effect of electric field on the structure of poly (ethylene glycol) (PEG) terminated alkanethiol self assembled monolayer (SAM) on gold has been studied using parallel molecular dynamics method. An applied electric field triggers a conformational transition from all-trans to a mostly gauche conformation. The polarity of the electric field has a significant effect on the surface structure of PEG leading to a profound effect on the hydrophilicity of the surface. The electric field applied anti-parallel to the surface normal causes a reversible transition to an ordered state in which the oxygen atoms are exposed. On the other hand, an electric field applied in a direction parallel to the surface normal introduces considerable disorder in the system and the oxygen atoms are buried inside.

Date

2003

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Priya Vashishta

Share

COinS