Identifier

etd-07062012-120939

Degree

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering

Document Type

Dissertation

Abstract

Wireless communication encompasses cellular telephony systems (mobile communication), wireless sensor networks, satellite communication systems and many other applications. Studies relevant to wireless communication deal with maintaining reliable and efficient exchange of information between the transmitter and receiver over a wireless channel. The most practical approach to facilitate reliable communication is using channel coding. In this dissertation we propose novel coding and decoding approaches for practical wireless systems. These approaches include variable-rate convolutional encoder, modified turbo decoder for local content in Single-Frequency Networks, and blind encoder parameter estimation for turbo codes. On the other hand, energy efficiency is major performance issue in wireless sensor networks. In this dissertation, we propose a novel hexagonal-tessellation based clustering and cluster-head selection scheme to maximize the lifetime of a wireless sensor network. For each proposed approach, the system performance evaluation is also provided. In this dissertation the reliability performance is expressed in terms of bit-error-rate (BER), and the energy efficiency is expressed in terms of network lifetime.

Date

2012

Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Wu, Hsiao-Chun

Share

COinS