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ABSTRACT 

Particulate processes have been widely involved in various industries and most products 

in the chemical industry today are manufactured as particulates. Previous research and practise 

illustrate that the final product quality can be influenced by particle properties such as size and 

shape which are related to operating conditions. Online characterization of these particles is an 

important step for maintaining desired product quality in particulate processes. Image-based 

characterization method for the purpose of monitoring and control particulate processes is very 

promising and attractive. 

The development of a digital image-based framework, in the context of this research, can 

be envisioned in two parts. One is performing image analysis and designing advanced algorithms 

for segmentation and texture analysis. The other is formulating and implementing modern 

predictive tools to establish the correlations between the texture features and the particle 

characteristics.  

According to the extent of touching and overlapping between particles in images, two 

image analysis methods were developed and tested. For slight touching problems, image 

segmentation algorithms were developed by introducing Wavelet Transform de-noising and 

Fuzzy C-means Clustering detecting the touching regions, and by adopting the intensity and 

geometry characteristics of touching areas.  Since individual particles can be identified through 

image segmentation, particle number, particle equivalent diameter, and size distribution were 

used as the features. For severe touching and overlapping problems, texture analysis was carried 

out through the estimation of wavelet energy signature and fractal dimension based on wavelet 

decomposition on the objects.  



xii 
 

Predictive models for monitoring and control for particulate processes were formulated 

and implemented. Building on the feature extraction properties of the wavelet decomposition, a 

projection technique such as principal component analysis (PCA) was used to detect off-

specification conditions which generate particle mean size deviates the target value.  

Furthermore, linear and nonlinear predictive models based on partial least squares (PLS) and  

artificial neural networks (ANN)  were formulated, implemented and tested on an experimental 

facility to predict particle characteristics (mean size and standard deviation) from the image 

texture analysis. 
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CHAPTER 1. INTRODUCTION 

1.1 Problem Statement 

Typically, a process is supposed to operate at a given condition according to its design 

specifications. This operating point is generally the most attractive one, satisfying some 

performance criteria. If the process deviates from the desired operating point, substantial losses 

may happen. However, the process behaviour changes with time, consequently monitoring and 

controlling is essential to meet the standards and requirements of the performance criteria. With 

the availability of a variety of sensors capable of real-time measurement of various process 

states, coupled with advances in computer technologies, real-time monitoring systems have 

become an integral part of the present day industrial processes. Although some sectors of the 

process industry have taken advantage of the modern tools for process monitoring 

(petrochemical), other sectors (particle process such as crystallization) are yet to take advantage 

of these technologies into their operations. Crystallization is a powerful production and 

separation process. It can mass-produce products with purities that are difficult to achieve using 

other production processes. Due to this reason, crystallization is the preferred way to 

manufacture pharmaceuticals and proteins that are subject to United States Food and Drug 

Administration (FDA) purity regulations. It also is used for the manufacture of agrochemicals 

and fine chemicals. Any advancement on the on-line optimization and control of crystallization 

processes will require robust and reliable on-line methods to characterize the product quality 

(crystal size distribution and shape).  

Particle/crystal properties influence final product quality as well as downstream 

processing requirements and more importantly, depend on operational conditions. In a typical 

operation the process is subject to disturbances affecting the particle/crystal formation and thus 
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the final product quality. The operating conditions can be adjusted, if information of the product 

characteristics is available on-line so that proper control actions/adjustment can be made. Hence 

characterizing the particle characteristics is very important from the process monitoring and 

control point of view.  

The current challenge in particulate processes which is also preventing of adopting 

advanced model-based control strategies is the non-availability of on-line sensors. Online 

characterization of particulate processes for monitoring and feedback control requires direct real-

time measurement. This involves defining the measurement technology employed, calculation of 

various variables and physical attributes of particles, and implementing the characterization in 

property evaluation or in online process control  [1]. Typically, particle size, particle size 

distribution, and particle shape are critical properties. For a solid material, particles are 

characterized by both a characteristic size and a representative shape; for a liquid material, 

particles such as droplets have a spherical shape and their sizes are usually expressed as their 

diameter [2].  

Various measurement technologies exist and many are commercially available for 

measuring particle size and shape. These commonly include systems based on the technologies 

of laser diffraction, ultrasound attenuation, and laser reflectance [3-5]. It is safe to say that most 

of these techniques do not provide an absolute measure of size and shape, but infer the size and 

shape indirectly based on some secondary variable. However, these devices have further 

drawbacks such as high costs, unsuitability for in situ or on-line measurements, assumptions of 

specific shapes of particles, and requirements of particle dispersion prior to size measurement. 

Naturally a measurement system with acceptable costs and high reliability in an industrial 

environment would be a preferred choice.  
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Digital image analysis is a very promising and attractive method for direct measurements, 

real-time monitoring and control of particle size, size distribution and shape. This is also 

facilitated by recent progress in high speed imaging devices and equally powerful computers at 

reasonable costs and the adaptability to real-time application. In addition, digital image analysis 

can potentially provide absolute size and shape quantification compared with aforementioned 

measurement techniques. A digital image is defined as a 2D function,  (   ), where   and   are 

spatial coordinates,  (   ) is the amplitude value, and   and   are finite, discrete quantities [6]. 

Digital images can be obtained by digital cameras such as charge coupled devices (CCDs) which 

have been used widely at relatively low prices. It is worth to mention that image devices can 

capture not only the human visible spectra band, but also the full range of the electromagnetic 

spectrum, ranging from gamma to radio waves. Thus, digital images include both traditional 

photographic images, ultrasound images, and electron microscopy images, making the 

application field multi-scaled. Development of an automatic vision-based system which can be 

integrated to the monitoring and control loop of the process is, however, not without challenge. 

Direct observation is now considered as the best approach to monitor particle shape and size [7]. 

Process images can provide more realistic 2D information on particle shape and size and better 

understanding about the process [8-10].  

Because of the advantages and application potential of digital images, they have attracted 

plenty of researchers’ attention, and different image based approached have been proposed in the 

last decade for monitoring and control particulate processes. Crystal digital images have many 

applications, such as: measurement of grain size [11, 12] and crystal morphology [13], growth 

rates of individual crystal facets [14], monitoring the particle shape [15, 16], and detecting 

polymorphic transformations [17] during the crystallization process. Larsen et al. proposed an 
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algorithm of segmentation for High-Aspect-Ration Crystals with images of suspended crystals to 

monitor crystal size distribution [18]. Khalil used a circular Hough transform to estimate droplet 

size during an emulsification process to understand the evolution of liquid-liquid dispersion [19]. 

Automated image analysis had been used as a control tool for multiple emulsions [20]. Image 

analysis has also been involved in monitoring milling quality of rice in terms of whiteness and 

percentage of broken kernels in milled rice [21]. Singh and Rao proposed an idea of removing 

gangue material from the ore of bigger size ranges by image processing and techniques for 

textural feature extraction from images [22]. Scanning electron microscope (SEM) images of the 

coating on the surfaces of solar collectors at different deposition times were used to investigate 

the correlation of optical properties with the microstructure of coatings with the technique of 

fractal dimension [23].  Multivariate image analysis has been adopted for coating uniformity 

assessment for coloured immediate release tablets [24].  

 

1.2 Dissertation Motivation 

Based on the previous discussion, accurate extraction of size and shape features of 

particles from images is necessary for reliable particle image analysis and important since 

whether to change operating conditions or not and the direction of change depend on it. In 

reality, challenges still exist for image analysis. One of these challenges is that particle images 

always contain various noises. The susceptibility of images to noise depends on the sensitivity of 

imaging sensor and transmission methods to external disturbances. Another challenge is the 

problem of touching and overlapping regions in particle images [25, 26]. Although some kind of 

particle dispersion method can be used to avoid/reduce this phenomenon, they cannot eliminate 

touching and overlapping events. Consequently, touching and overlapping areas of particle 
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images need to be separated or analysed texturally otherwise erroneous size and shape features 

will be generated.  

Given the correct size features, decision making to maintain desired processes are 

needed. This aim can be realized through building monitoring and control methods that address 

these challenges and can be used to detect off-specification conditions and/or provide the current 

values (particle characteristics) of the controlled targets.   

 

1.3 Aims and Contributions of This Dissertation 

The aim of this work is to contribute towards the development of an image-based 

framework, for the purpose of monitoring and control of particulate processes and that accurately 

will allow extracting size and shaping information for on-line implementation. 

Specifically, this dissertation has addressed the following key problems:  

 Image acquisition. A robust and reliable process imaging setup is one of the key 

components of an image based monitoring system. Some of the defects that occur during 

acquisition such as serious blurs are not easily rectified by digital processing of the captured 

images or lead to high cost in analysis time. Avoidance of such defects is very important 

towards the overall efficiency of the monitoring system. 

  A laboratory scale software/hardware online and offline framework for capturing 

particle/crystal images was set up at the LSU Process Systems laboratory. The set-up 

includes a crystallization reactor fully automated using computer control system for 

guiding the system along the optimal trajectories 

 Image analysis. Extracting the accurate relevant information related to the particle properties 

which are needed to be monitor and control can be realized through image processing. The 
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steps of image analysis are determined by the challenges of accurately extracting 

information. The first step is noise removal. This is because images are always degraded 

because of various noises hidden in both high and low frequencies, and in both space and 

frequency. Noises can be a disturbance to influence the accuracy of extracted features. Thus 

it’s necessary to deal with them.  

 An approach for removal of high frequency noise in particle images was formulated and 

implemented and an automatic selection of parameters has been proposed. 

 Low frequency noise can be handled when necessary. 

The second step can be achieved by formulating and implementing two techniques: 

segmentation and texture analysis. Segmentation, in our approach, involves separating the 

background and object areas as well as segmenting individual objects in the image. However, 

texture analysis is appropriate when touching and overlapping problem is severe and regular 

segmentation methods cannot obtain individual objects.  

 Separation methods have been proposed and implemented exploiting the characteristics 

of the touching and overlapping area in particle images. 

 A wavelet multi-resolution approach for texture analysis was formulated and 

implemented on crystal images obtained to characterize the time evolution of the particle 

characteristics during a crystallization operation.  

The third step is feature representation. Length is a common used to describe size. Others can 

also available during in image analysis field. The suitability of size representation depends on 

the technique applied in the previous step.  

 Units in pixels and length, area, diameter, size distribution and so on have been used 

when individual objects/particles can be identified.  
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 Statistical measurements such as energy and fractal dimension were suitable to 

characterize if texture analysis was performed.  

 Models for process monitoring and control.  Given the possibility of obtaining feature 

information from particle images, a key component towards an image-based measurement 

system is the combination/integration of all the individual components.  

 Principal Component Analysis (PCA), Partial Least Square (PLS) and Artificial 

Neural Network (ANN) models have been formulated and built towards and on-line 

automated particle size distribution characterization to be used for online monitoring 

and control purposes. 

 An integrated framework was formulated and implemented within an experimental 

facility encompassing image acquisition, processing for feature extraction, and 

evaluation of system state from trends in the object features.  

 Finally, experimental work was conducted to validate the performance of the 

proposed approach to characterize the crystal size distribution (CSD) in a 

crystallization unit. The framework was tested and validated experimentally through 

investigations in the non-isothermal operation of NaCl-water-ethanol antisolvent 

crystallization system.  

 

1.4 Structure of This Dissertation 

The following paragraphs detail how the dissertation is structured. The first chapter 

highlights the motivation for the dissertation, generalizes the different contributions in the 

dissertation, and gives a brief literature background of image-based frameworks for particulate 

systems. 
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The second and third chapters focus on image segmentation approaches for particulate 

systems which involves limited touching and overlapping problems between particles.  Chapter 2 

presents a novel technique based on combining wavelet transform and Fuzzy C-means Clustering 

(FCM) for particle image segmentation. Through performing wavelet transform on images, the 

noise and high frequency components of images can be eliminated and the textures and features 

can be obtained. FCM is then used to divide data into two clusters to separate touching objects. 

To quantitatively evaluate this method, a case study involving a particle image is investigated. 

The procedure of selecting optimum wavelet function and decomposition level for this image is 

presented. ‘Fuzzy range’ is used as a derived feature for segmentation. The number of particles, 

particle equivalent diameters, and size distribution before and after partition are discussed. The 

results show that this method is effective and reliable. An architecture for an image-based 

feedback monitoring and control framework for particulate processes is proposed. 

 In Chapter three, an algorithm is proposed to separate the touching and overlapping 

particles, which is based on the detection of both intensity and geometric features of touching 

and overlapping regions since they show distinct characteristics in these two profiles. Their 

intensities have values between objects’ and backgrounds’. The regions where the boundaries of 

the objects touch or cross show a high level of concavity. Such an approach gives a robust 

separation method. The performance of the algorithm is compared with that of the watershed 

segmentation algorithm as well as manual examination of particulate images. 

The fourth chapter investigates the use of texture analyses in the form of fractal 

dimension (FD) and energy signatures as characteristic parameters to track the crystal growth 

when the touching and overlapping problems become severe. The algorithm uses a combination 

of thresholding and wavelet-texture analysis. The thresholding method is used to identify crystal 
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clusters and remove empty backgrounds. Wavelet–fractal and energy signatures are performed 

afterwards to estimate texture on crystal clusters. A series of images obtained at different crystal 

growth stages during a NaCl–water–ethanol anti-solvent crystallization system is investigated 

and their texture characteristics as well as transform tendency during the crystallization process 

are evaluated.  

The fifth chapter, as an extension section of chapter 4, the methodology of establishing 

PLS model comprising FD and energy signatures to predict the mean size from images is 

proposed and a PLS model is built with the images taken along the crystallization run in chapter 

4. Also PCA models are established for the purpose of mean size characterization / detection. 

Experimental data from the previous crystallization run are used for illustrating the proposed 

methodology of designing PCA models. 

In chapter six, an image-based multi-resolution sensor for online prediction of crystal size 

distribution (CSD) is proposed. The mean and standard deviation of lognormal probability 

density function as the CSD can be predicted through the on-line sensor. In the proposed 

approach, the texture information extraction strategy is the same to the one as described in 

chapter 4.  Following a nonlinear mapping consisting of an artificial neural network (ANN) is 

incorporated using as inputs the texture information in conjunction with the available on-line 

process conditions (flowrate and temperature). The output data for training the ANN models, i.e. 

the mean and standard deviation of the crystal size distribution, are measured manually at 

different sampling times as well as in a range of operating conditions. A series of NaCl-water-

ethanol anti-solvent crystallization experiments is carried out. A software framework developed 

in MATLAB enables the configuration of the image acquisition parameters as well as the 

processing of the on-line images. Validations against experimental data are presented.  
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Finally chapter seven concludes the dissertation, and provides a list of possible future 

extensions.  

List of publications arising from this thesis: 

 B. Zhang, A. Abbas, J. A. Romagnoli. (2011). Multi-Resolution Fuzzy Clustering 
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155-164. 

 B. Zhang, A. Abbas, J. A. Romagnoli. (2012) “Monitoring crystal growth based 

on image texture analysis using wavelet transformation”, Proceedings ADCHEM 

International Symposium on Advanced Control of Chemical processes, July 

Singapore 

 B. Zhang, A. Abbas, J. A. Romagnoli. (2013). Automatic image-based estimation 

of Texture Analysis as a monitoring tool for crystal Growth. Chemometrics and 
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 B. Zhang, R. Willis, J. A. Romagnoli, C.A.M. Fois, S. Tronci, R. Baratti (2013), 

“Image-Based Multi-Resolution-ANN Approach for On-line Particle Size 

Characterization”, Chemical Engineering Transactions, Vol. 32  

 B. Zhang, J. Khorat, A. Abbas, J. A. Romagnoli (2013). Separation of Touching 
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 CHAPTER 2. MULTI-RESOLUTION FUZZY CLUSTERING APPROACH FOR 

IMAGE-BASED PARTICLE CHARACTERIZATION FOR PARTICLE SYSTEMS 

MONITORING AND CONTROL* 

2.1. Introduction 

Accurate extraction of size and shape features of particles from images is necessary for 

reliable particle image analysis. In reality, particle images always contain touching and 

overlapping regions. Physical particle dispersion is used to avoid this phenomenon prior to 

capturing the images. This can reduce but cannot eliminate touching and overlapping events 

because of the fact that dispersed particles will flow together or ecliptically. Touching and 

overlapping areas of particle images need to be separated otherwise erroneous size and shape 

features will be generated. Image segmentation refers to the techniques used in image processing 

for separating touching and overlapping areas in images and is the concern of this chapter with a 

focus on particle image segmentation.  

Image segmentation is one of the most crucial and challenging tasks in image analysis. It 

is widely used in object detection [1, 2]. Since most image processing procedures are executed 

after the separation step, the eventual success or failure of image analysis largely relies on 

segmentation accuracy. The goal of segmentation is to divide the digital image into different 

visually distinct regions or objects. Image segmentation can be formally defined [3] as follows: 

supposing   represents all the pixels of an image, partition of the set   into   regions can be: 

  ⋃  

 

   

                     

            (2.1) 

where    and    are the i-th and j-th region respectively,   is the empty set. For each region, all 

the pixels possess similar characteristics or properties; while different regions, even adjacent  

*Portions reprinted from Chemometrics and Intelligent Laboratory System, Copyright 2011 
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ones are non-homogeneous. The criterion   to decide which region a pixel belongs to can be 

intensity, texture, color and any other measurable features. Segmentation should satisfy the 

following two conditions: 

 (  )       

 (     )            (2.2) 

Many segmentation techniques have been reported and developed. Fu and Mui [4] 

reviewed segmentation techniques and categorized proposed techniques in the area of biomedical 

image segmentation into three classes: characteristic feature thresholding or clustering, edge 

detection and region extraction. Pal and Pal [5] summarised segmentation techniques in the 

situations of gray tone images, color images and images with high noisy environments. Cufi et 

al. [6] defined and classified segmentation techniques based on integrating boundary and region 

approaches. Image segmentation has to address the challenge that no specific approach can be 

suitably applied to all the kinds of images. For example, a segmentation technique used in 

images for remote control applications may not be suitable for medical images. The separation 

efficiency of applied segmentation technique largely depends on how much accurate information 

can be abstracted from images. Since images come from different application fields and 

environments have their own manners of noise presentation and information storage, a 

segmentation technique may only perform successfully or efficiently on images that have the 

similar characteristics. 

In this chapter, a novel approach is proposed for particle image segmentation based on 

combing wavelet transform (Multi-Resolution) and Fuzzy C-means Clustering (FCM) for image 

segmentation. Wavelet transform has been widely used for multi-resolution analysis in the last 

two decades. Basically it is used for 1D signal (time series) processing. An image can be taken as 
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a 2D signal where the temporal is replaced by spatial information. Wavelet transform makes it 

possible to investigate a signal (image) in both time (space) and frequency domain at the same 

time [7-9]. In our research, wavelet transform is used to identify the image surface self without 

noise and high frequency components. Pattern recognition analysis, in terms of FCM is then 

incorporated for clustering analysis of the image at the surface self. With FCM method, we 

differentiated objects and background, identified the objects and boundaries and separated the 

touching areas.  A new derived feature called ‘fuzzy range’ is incorporated to extract the 

touching area for segmentation. No neighborhood based calculation is needed when using fuzzy 

range other than traditional features like standard deviation. The proposed approach not only 

efficiently separates touching and overlapping areas in particle images, but also makes on-line 

monitoring and controlling of particle systems based on image analysis a feasible technique. 

This chapter is organized as follows. The methodology of Multi-resolution Fuzzy 

Clustering is introduced in detail in Section 2.2 and 2.3. In Section 2.4, we demonstrate our 

methodology. In Section 2.5, a case study involving a particle image sample is carried out to 

illustrate the methodology. An architecture for a monitoring system for particle size and size 

distribution is proposed in Section 2.6. Finally, conclusions are presented in the last section. 

 

2. 2 Image Analysis by Wavelet Transform 

Any image can be considered as a combination of the image self and imaging artifacts 

(noise). Three main components are very often isolated for an image self, namely the roughness, 

the waviness and the form which can be considered as a multi-resolution signal combination. 

Once an image is taken, it is difficult to distinguish the contribution of each resolution by 

ordinary analysis methods, which focus on either spatial distribution at one resolution or 

frequency distribution only. Both image spatial and frequency information are important to de-
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correlate the contribution of different process steps. A recent Multi-Resolution technique, 

wavelet decomposition, can successfully separate the image underlying structure, in the form of 

the low frequency sub-image, image details, in the form of high frequency sub-images, as well as 

the imaging noise. High-frequency details and the imaging artifacts are difficult to differentiate, 

since they all fall into the high frequency range. The most convenient way to calculate different 

image characterizing features are also obtained from wavelet coefficients.  

Particle images are either intensity of pixels or height of the surface in a 2D array. A 

wavelet decomposition is to be done for this 2D array of data. Since the data are discrete, a 2D 

discrete wavelet transformation is to be performed. This is discussed next.  

 

2.2.1. Discrete Wavelet Transformation  

In a discrete wavelet transformation, discrete value of scale   and location parameter 

  are used. They are discretized in such a manner that   and   are linked. The scale   is generally 

discretized in a logarithmic way   
  where   is an integer. Each location   can be reached in 

discrete steps   (an integer) from an origin. It is also proportional to the scale   
 . Thus it can be 

represented as      
 .  The wavelet function      in the discrete form is 

    ( )  
 

√  
 

 (  
       ) 

(2.3) 

where    is a fixed dilation parameter and is greater than 1and    is the location parameter and is 

greater than zero. The discrete wavelet transformation of function  ( ) is thus a function of   

and   instead of   and   respectively: 

     ∫  ( )    ( )  
  

  

 
(2.4) 
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Discrete wavelet transformation     is known as wavelet coefficient or detail coefficient. 

The most common way of discretization is to use a dyadic grid where    and     are 2 and 1 

respectively. Discrete dyadic wavelets are orthonormal in nature. The original function can be 

reconstructed using the wavelet coefficients: 

 ( )  ∑ ∑         

  

    

  

    

( ) 
(2.5) 

 

2.2.2 Multi-resolution Analysis and Discrete Function  

Like wavelet functions, there is another set of functions called scaling function     ( ). 

The scaling function when convoluted with the function  ( ) gives approximation coefficient 

[10]: 

     ∫  ( )    ( )  
  

  

 
(2.6) 

The scaling function is orthogonal to translation ( ) but not to dilation ( ). So, an 

approximation of the function ( ) , which is also considered as low frequency information, at 

scale index   can be obtained as  

  ( )  ∑         ( )
  

    
 

(2.7) 

Using the approximation coefficient and detail coefficient we can get the function  ( ) - 

as a sum of approximation of the function at arbitrary scale index    and detail function from 

scale    to   : 

 ( )  ∑           ( )
  

    
 ∑ ∑         

  

    

  

    

( ) 
(2.8) 
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The detail function or high frequency information at scale index   can be written as  

  ( )  ∑         ( )

  

    

 
(2.9) 

Thus we can write the function  ( ) using Equations (2.8) and (2.9) as  

 ( )     
( )  ∑   ( )

  

    

 
(2.10) 

where when    is low the resolution is high and vice versa.  

If the original function is discrete then it is seen as an approximation at scale index  =0. 

If the function   ( ) is of finite length   and the scale index varies from      , then it is a 

dyadic grid     . Since   is the length through which the wavelet function can be translated 

( ), when the scale index is   we have            or        . Thus    ranges 

between 0          for each  . In that case, by Equation (2.8) the function   ( ) can be 

written as     

  ( )          ( )  ∑ ∑         ( )

      

   

 

   

 
(2.11) 

By Equations (2.7) and (2.9) it can also be written as  

  ( )    ( )  ∑   ( )

 

   

 
(2.12) 

  

 

2.2.3 2D Discrete Wavelet Transformation 

In the application of the image, the data set is a 2D array of pixels. To perform 2D 

wavelet composition on the image, 2D discrete wavelet transformation must be applied. In 
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moving from 1D to 2D wavelet transformation, the rows and columns of the data matrix (x and y 

coordinates) that represent the image are treated as independent. Therefore, the 2D filters 

become the tensor products of their 1D counterpart. The scaling and wavelet functions for a 2D 

transform are obtained from tensor product of the one dimensional scaling and wavelet functions.  

 (     )   (  ) (  ) 

  (     )   (  ) (  ) 

  (     )   (  ) (  ) 

  (     )   (  ) (  ) (2.13) 

where   is the scaling function and   ,   and    are the vertical, horizontal and diagonal 

wavelet respectively. The corresponding approximation coefficients are       and detail 

coefficients are     
      

  and     
  respectively. Modifying Equation (2.8), the image  ( ) is: 

 ( )  ∑           ( )
  

    
 ∑ ∑         

  

    

  

    

( ) 
(2.14) 

At level one, the image data is visually decomposed into four sub-images, representing 

the smoothed approximation, the horizontal detail, the vertical detail and the diagonal detail. This 

performance can be iterated on the smoothed approximation sub-image. 

 

2.2.4 Image Multi-resolution Denoising 

An image is always affected by noise. The main source of noise contained in images is 

the presence of various types of optical, electrical and thermal interference during the process of 

image acquisition and associated steps. The susceptibility of acquired images to noise largely 

depends on the sensitivity of image sensors and transmission methods to external disturbances. 

Images suffering from noise are in a degraded state. Before proceeding with image segmentation, 
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removing noise in images or restoring the degraded images into its original upgraded state is 

carried out. In general, spatial (linear and nonlinear) [11] and frequency (Fourier transform) [12] 

filters are the widely adopted method for noise removal. However, those filters can only process 

images on either spatial or frequency domains. For example, when Fourier transform makes 

transformation on the frequency domain, the spatial information is lost in this process. Wavelet 

transform on the other hand makes it possible to investigate an image in both space and 

frequency domain at the same time. It can distinguish meaningful variability of the pixel light 

intensity in an image from random fluctuations and discard noise. 

The Multi-resolution approach deals with denoising problems through decomposing 

images with wavelet transform and examining the detail coefficients at different decomposition 

levels. Upgraded images are achieved by subtracting the unwanted part of the noise from detail 

coefficients. As mentioned before, a given image can be modelled by Equation (2.8). While its 

corresponding upgraded image has models of the form: 

 ( )  ∑           ( )

  

    

 ∑ ∑     
            ( )

  

    

  

    

 

    
         {

                   

                 
 

(2.15) 

where    is the decomposition level selected for the image denoising problem. Detail 

coefficients generated before level     are removed as noise.  

 

2.2.5 The Choice of Wavelet Function and Wavelet Decomposition Level 

Since there are several wavelet functions available, the selection of optimal wavelet 

function, for the particular application, is the first problem to be tackled when applying the 

transform on an image. Wavelet functions are catalogued into various wavelet families and the 
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most common ones are: Haar, Daubechies, Biorthogonal, Coiflets, Symelets. For some wavelet 

families, such as Daubechies, their member numbers are not constrained to only one. Different 

wavelet functions will generate different transforms, central frequencies and vanishing moments. 

By performing the transform using a wavelet function on a specific image, the decomposed sub-

images will present the features in terms of frequency and spatial localization in response to the 

characteristics of the wavelet function. However, that wavelet function may or may not be able 

to capture the actual information from the image. Also an optimal function selected for one 

image may not be the best for another situation. The accuracy of image analysis results therefore 

depends on the selection of wavelet function. 

Another issue that needs to be addressed is level of decomposition where we get the 

surface self without image artifacts. Theoretically, for an image whose pixel number is m in both 

directions, n decomposition levels can be performed if n satisfies the condition of 2
n
 ≤ m < 2

n+1
. 

As the image is decomposed to a certain level, the intrinsic information is totally smoothed out. 

However, the artifacts of the wavelet function will be added to the corresponding approximation 

if the decomposition process continues. In order to maintain the true characteristics and also 

remove irrelevant noise and high frequency components of the image at the same time, it is 

necessary to find a suitable decomposition level.  

Entropy measures can be employed to help identify the appropriate wavelet function and 

decomposition level which would yield an approximate sub-image with maximum information 

with respect to the key features for proper image segmentation. Among different entropy criteria, 

Shannon Entropy is applied. The concept of Shannon Entropy is sometimes referred to as a 

measure of uncertainty and is defined for a discrete probability distribution    : 
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(2.16) 

n is the total number of possible classes. The probability distribution is obtained from the 

normalized wavelet coefficient energies: 

 ̅   
  

    
 

∑ ∑     
  

   
 
   

 
(2.17) 

The idea of Shannon Entropy as the criteria to identify the ‘best’ decomposition level is 

based on the measurement of the randomness for a given image. The more random parts existing, 

the more Shannon Entropy value the approximation image has. By performing the wavelet 

analysis on an image using a particular wavelet function, the Shannon Entropy will decrease at 

first due to the removal of noises and high frequency components. However, as the procedure 

goes on, it will increase after a certain level because of the added artifacts from the wavelet. So 

the decomposition level at which the first minimum Shannon Entropy value is present or the 

critical point changing the trend of Shannon Entropy can be considered as the optimum level.  

The selection of wavelet basis functions by Shannon Entropy depends on the amount and 

distribution of information it captures from the original image. The entropy values obtained at 

optimal decomposition levels will not be the same for different wavelet functions, which means 

that their information contents will also be different. Among different wavelet functions, higher 

entropy value can be explained as more underlying information are recovered and contained in 

the approximation image. The maximum entropy value will probably appear when the 

information is evenly spread whereas the minimum entropy occurs when all the information 
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squashes in a single location. Thus, we look for the wavelet function which provides the 

maximum Shannon Entropy value at its optimal decomposition level. 

 

2.3 Clustering Pixel Intensity Values  

Clustering analysis is a statistical method of partitioning a set of observations into several 

subsets which can be called clusters [13]. The components in the same subset have a similar 

property to some extent [14]. This feature in one subset is different from those in the other 

clusters so that clusters can be distinguished. The way to determine the similarity among 

components is based on a distance measure.  A common used distance function for clustering 

analysis is the Euclidean distance. Clustering methods can be classified into three categories: 

hierarchical clustering, partitional clustering and spectral clustering. Fuzzy C-means Clustering 

belongs to the category of partitional clustering. 

 

2.3.1 Fuzzy C-Mean Clustering 

Fuzzy C-means Clustering  assigns each observation partly into a cluster [15]. Since data 

points can always be considered in one cluster and also in another one in practical situations, the 

concept of fuzzy theory is applied in clustering method. Rather than belonging completely to one 

cluster, every observation has a degree of becoming a member of that cluster. In this way, all 

partitions are connected to each other. Thus FCM has special advantages over conventional 

clustering methods. For all the c clusters, the sum of the degree or the membership of each point 

should be 1. 
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∑       for all the   clusters
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(2.18) 

where     is interpreted as the degree of point k in the i-th cluster. The total number of input 

points and clusters are n and c respectively.     satisfies the condition that its value is between 0 

and 1. When     equals 1, it means point i belongs to the i-th cluster completely; otherwise it is 

not the member of the i-th cluster at all if the value of     is 0.  

The degree     itself can be calculated as the inverse of the distance measure between the 

point    and its corresponding cluster centre. The normalized and fuzzyfied form is used more 

widely. Introducing the weighting exponent m 
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The cluster centre    is nothing but the average of all the observations in i-th cluster: 
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(2.20) 

Similarly,    denotes the mean in j-th cluster. To divide observations into desired c 

clusters, FCM algorithm minimizes an objective function consisting of summation of weighted 

membership and squared error of the distance to the cluster centre through an iterative process. 
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(2.21) 
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The FCM algorithm can be performed in the following steps: 

a. Decide the number of clusters c according to the requirement and set a sensitivity 

threshold ε (a small positive constant). 

b. Initially guess all the cluster centers and distribute every point the degree belonging to 

each cluster. 

c. Iteratively update the cluster centers with Equation (2.20) and the degrees of all the 

points with Equation (2.19) until the difference of the objective function (Equation 

(2.21)) between two consecutive iterations is less than ε. 

                                          

2.3.2 Fuzzy Range Clustering 

 Fuzzy Range Clustering (FRC) was originally proposed by Khorat [1] and is embedded 

into the multi-resolution approach described before. FRC mainly investigates the differences in 

membership values of clusters generated from pixel intensities through FCM. Supposing only 

two clusters (one for objects and one for background) are created and     and     are the 

membership values for point i in one fuzzy cluster and the other respectively. The fuzzy range 

for both clusters (Ri) is formulated as: 

                               (2.22) 

   is a new and typical feature of touching areas besides traditional features such as 

gradient, standard deviation, etc.. From the standpoint of fuzzy clustering theory, the pixel 

intensities of touching areas have a similar degree of belonging to both clusters. It may be noted 

that the advantage of FRC over traditional features is that only the pixel intensities of interest is 

involved and  is independent of the size of the neighborhood [13].  
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2.4 Methodology for Particle Image Segmentation 

The essential and sequence of steps for implementing the proposed methodology for 

particle image segmentation are given in Figure 2.1. An input image is treated as a 2D array of 

pixel intensities by several wavelet functions at multiple decomposition levels and 

approximation images are then generated. Shannon entropy is calculated for each approximation 

image. The optimal decomposition level by one wavelet function is achieved through finding the 

first minimum entropy. The most suitable wavelet function is selected by comparing the entropy 

values at their optimal decomposition level among all the wavelet functions and identifying the 

maximum one. The approximation image which is transformed by the most suitable wavelet 

function at the optimal decomposition level is processed in two segmentation ways, thresholding 

method and fuzzy clustering method. A base separated image in a binary format is formed 

(thresholded image) by thresholding method and is prepared to be used as a basis. Performing 

fuzzy cluster method obtains membership values of objects and background clusters. The 

touching areas in particle images are recognized by fuzzy range method because their 

membership values for belonging to objects or background are similar. The final segmentation 

image is obtained by subtracting touching regions from thresholded image. 

 

2.5 Case Study 

Detecting and extracting accurate information from on-line or off-line process is the key 

step for any control and monitoring system. Usually, particle size and size distribution are 

parameters measured from particle image. However, particle images always contain touching 

and overlapping regions, making segmentation important and a necessary step. In this case study, 

the proposed separation technique combining wavelet transform and FCM algorithm is applied to 
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particle image analysis to identify and separate objects and the result are compared with 

conventional segmentation approaches.  

 

Figure 2.1: Wavelet-FCM methodology for particle image segmentation. 

 

2.5.1 Imaging Setup Used in the Present Study 

A laboratory scale software/hardware framework for capturing particle images for this 

case study was originally setup at the University of Sydney [16] and the images utilized are from 

that work. The experimental setting includes a system with a flow cell and pump, through which 

particles are continuously circulated, an illumination system for lighting up the imaged region of 

the flow cell, an optical zoom system for providing magnification and a digital video camera for 

continuous image capture. Figure 2.2 illustrates the schematic diagram of the experimental set up. 

The camera used is a CMOS chip based video camera (BASLER make, model A620f) with a 
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resolution of 1024 X 1280 pixels and is connected to the computer using a IEEE 1394 cable. The 

particles were circulated with water using a pump (Watson Marlow UK). An optical zoom 

system (Thales Optem zoom125C) with maximum magnification of 150X was fitted to the 

camera lens. A software framework developed in MATLAB enables the configuration of image 

acquisition parameters. The particles used are Poly Vinyl Chloride (PVC) particles of refractive 

index of about 1.5. 

 
Figure 2.2: Schematic diagram of the image acquisition setup: (A) Vessel with particle 

suspension, (B) Circulating pump, (C) Optical flow cell, (D) Camera, (E) Zoom system, (F) 

Illumination, (G) Computer (Khorat, 2008) 

 

2.5.2 Application  

The original grey particle image in a JPG format was imported into MATLAB for 

processing. To simplify the calculation, it was cropped into an image possessing 1024x1024 

pixels shown in Figure 2.3a. Visual observation reveals a total of 15 particles in this image, all of 

which are sequentially labelled from 1 to 15. Manual partition and measurements were 

determined in the software of ImageJ (V1.42q, NIH, USA). In previous work, a nonlinear filter 

namely order statistics filters was chosen to process the image [1]. In the current work wavelet 
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transform will be used to improve image quality by decomposing an image into four sub-images, 

since noise and high frequency parts contained in an image exist in frequency and spatial domain.  

 

 
Figure 2.3: (a) Original particle image, (b) First approximation image of (a), (c) Process of 

wavelet transform on (a) by wavelet function db3 at the first decomposition level (Top left sub-

image is approximation coefficients, top right is horizontal detail coefficients, bottom left is 

vertical detail coefficients and bottom right is diagonal detail coefficients). 

 

To obtain the optimal solution, four common wavelet families and six decomposition 

levels for each wavelet function were considered. The entropy values of the approximation 

images are listed in Table 2.1. In each data column, the first minimum number was highlighted 

in bold. Some of them reached the minimum at the first decomposition level. Implementation of 

the wavelet transform only once by wavelet functions such as db3, coif1, and coif3 would be 

enough to remove noise and high frequency components and obtain smooth surfaces of the 

particles. On the other hand, for wavelet functions Haar, db6, sym4, and sym8, their spatial and 

frequency characteristics cannot remove surface noise in the first approximation so that more 

decomposition steps are needed to reach the lowest entropy value. Once this first minimum 

entropy is reached, on further decomposition, the artifacts from the wavelet function will be 

added to the particle surface which will make the surface irregular and correspondingly increase 

the Shannon Entropy. The decrease of entropy value after this increase in further decomposition 

(c) 
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level is due to the relative smooth surface shaped as a result of the removal of irregular parts.  

Taking this into consideration, the second or the third minimum point is meaningless since 

plenty of real information has been eliminated. By comparing those minimum values among 

different wavelet functions, the greatest was found to be 2.2661. This indicates that db3 can 

retain more information than the other wavelet functions. It can be said that a smoothed image 

containing maximum meaningful information can be obtained through performing wavelet 

transform on Figure 2.3a by wavelet function of db3 at the first decomposition level. 

The process of wavelet decomposition on Figure 2.3a is presented in Figure 2.3c. Four 

sub-images are produced. The approximation sub-image (top left) are the low frequency 

components and retained to obtain the improved image, while the other three detail sub-images 

are the high frequency components and considered as noise to remove. Figure 2.3b shows the 

improved image through inverse wavelet transform only on approximation coefficients.  

 

Table 2.1:  Shannon Entropy (1.000e+004) for different wavelet functions and decomposition 

levels. The minimum values are highlighted in bold. 

 Haar db3 db6 sym4 sym8 coif1 coif3 

1
st
 1.9968 2.2661 2.2644 2.348 2.1095 2.1579 2.0987 

2
nd

 1.9696 2.2736 2.2558 1.9792 2.0698 2.2484 2.2659 

3
rd

 1.944 2.2401 2.1278 2.3523 2.065 1.9628 1.9866 

4
th

 1.9176 2.2152 2.0458 2.4132 2.2069 2.2373 2.2663 

5
th

 1.9171 2.2372 2.0195 2.4357 2.2773 2.3616 2.2801 

6
th

 1.9865 2.4014 2.0196 2.3321 2.1604 2.3121 2.1435 

 

The improved image was then simply divided into objects and backgrounds by 

thresholding which is a segmentation method based on a threshold value. The Otsu’s method of 

selecting a threshold from grey level histograms was chosen in this work. Objects were formed 

where the pixel intensities are greater than the threshold value and the background is assigned 

where they are less than the threshold value. The binary image with labels on each particle 
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shown in Figure 2.4 shapes the objects whose values are 1 and the rest are the background with 

the value of 0. Some particles are connected to each other in the binary image. They were 

considered as a single object resulting in wrong particle sizing. The number of particles and 

particle size calculated from this binary image is used as a comparison to the partition result from 

the FCM approach. 

 

 
Figure 2.4: Thresholded image of Figure 2.3b. 

 

When partitioning the first approximation image into two clusters, representing the 

objects and the background, two membership images are generated as shown in Figures 2.5a and 

2.5b. Figure 2.5c describes the membership value versus pixel intensity. The weighting exponent 

m, the maximum number of iterations and objective error as the FCM parameters used in this 

paper are 2, 500 and 10
-5

 respectively. The influence of iterations number has been investigated 

as well and it is found that the same result can be obtained if the iterations number is chosen 

between 500 and 1000. 

On closer examination of the membership values of the boundary including touching 

regions in both membership images, it can be observed that they are similar. This may be due to 

the fact that their pixel intensity values are between those in the two clusters. The boundary 
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region image was obtained by subtracting the two membership images using FRC. The 

subtraction result was represented as an image like Figure 2.6a for better visualization [1]. The 

boundary regions have low values close to zero while objects and background parts show values 

close to 1 as expected. The boundary regions were highlighted with value of zero through 

transferring the subtraction results into a binarized version with the threshold method previously 

described. A binary complement was generated, with the result of boundary regions showing 

value of 1 like Figure 2.6b. However, the boundary lines were rather wide which could lead to 

severe area loses after removal of boundary lines from the above mentioned thresholded image. 

To minimize this problem, morphological thinning operation was performed producing a 

skeleton of the boundary regions. The thin boundary regions are shown in Figure 2.6c. 

 

                                                                                          

 
Figure 2.5: (a) High membership of object cluster and (b) High membership of background 

cluster; (c) Cluster membership value versus pixel intensity. 

(a) 
(b) 

(c) 
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Figure 2.6: (a) Values of Fuzzy Range represented as image, (b) Binary version of its 

complement and (c) Skeleton of Fuzzy Range image. 

 

To achieve the separation, the thin boundary including touching regions were removed 

from the thresholded image. After performing proper morphological operations deleting holes 

and spurs, the final results shown in Figure 2.7a were obtained. The labels of separated particles 

are printed on the image. Figure 2.7b shows the separated particle image using median filter [1]. 

 

2.5.3 Equivalent Diameter and PSD 

The particle number, particle equivalent diameter, and particle size distribution (PSD) are 

considered to illustrate the separation efficiency. The comparison involves Figure 2.3a (the 

manual processed image), Figure 2.4 (thresholded image) and Figure 2.7a (resulting from 

(a) (b) 

(c) 



34 
 

Wavelet-FCM approach). The comparison of the Wavelet-FCM method with the median filter 

approach with respect to segmentation level (Figure 2.7b) is also discussed as well. The 

thresholded image (Figure 2.4) results in 7 particles and the separated image (Figure 2.7a) results 

in 13 particles. The extra number was coming from separation of the touched objects which were 

considered as one single connected particle. However, the approximation image was not over 

partitioned since there are actually 15 particles by visual examination (Figure 2.3a). Although 

some particles are successfully separated, particle 4, 5, and 11 remain connected in Figure 2.7a. 

 

                                                
Figure 2.7: (a) Separated particle image, (b) Partition results using median filter method. 

 

The equivalent diameter, defined as the diameter of a circle that has the same area of that 

object, is used to describe the size of the particles. It is counted as the number of pixels. Their 

values in the manual processed image, thresholded image and separated one using Wavelet-FCM 

approach, are listed in Table 2.2. Particles in Figure 2.3a were identified manually as circles or 

ellipses. The same particle was chosen from the above mentioned three images to compare their 

sizes. For example, particle 9 in the original image, particle 2 in thresholded image and particle 6 

in separated image, are selected. The diameter found in the separated image is smaller compared 

with that from the theresholded image while both are greater than manual measurements. The 

7 

(b) 
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differences between thresholded image and separated image are generated due to the algorithms’ 

differences in identification of the particles’ boundary region. The particles shrink after 

segmentation because of the deletion of missing parts in edges considered as components of 

touching regions. The differences with manual measurements are caused by non-accuracy of 

modelling particles with ellipses. The shapes of some particles are irregular so that considering 

them as circles or ellipses in the manual measurement will lead to area loss or addition. 

 

Table 2.2: Particle equivalent diameter 

Particle 

label 

Manual 

processed 

image 

Thresholded 

image 

Wavelet-

FCM 

approach 

processed 

image 

1 126.6 630.3 176.3 

2 175.9 171.4 227.9 

3 169.0 55.8 21.79 

4 153.9 262.0 375.5 

5 106.6 230.0 310.9 

6 139.9 164.4 169.4 

7 216.7 99.3 53.3 

8 135.0 -- 199.0 

9 131.7 -- 156.1 

10 196.4 -- 260.4 

11 85.9 -- 224.8 

12 120.9 -- 161.7 

13 134.1 -- 95.7 

14 82.9 -- -- 

15 41.8 -- -- 

 

PSD provides direct information of the distribution of the equivalent diameters in a 

certain range and their normalized frequencies. The histogram of equivalent diameters and their 

fitting curves through Weibull density probability function are used to describe the PSD. PSD of 

the manual processed image, thresholded image and separated image are shown in Figure 2.8a, 

Figure 2.8b and Figure 2.8c respectively. PSD obtained by manual processing (Figure 2.8a) 
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illustrates that a large proportion of particles actually have equivalent diameters in the range of 

50 to 250. This proportion and equivalent diameter range are considered as a reference for PSD 

generated via threshold method and the Wavelet-FCM approach.  Comparing them (Figures 2.8b 

and 2.8c), we can find that the latter has high frequency of appearance of the particles with 

similar size and less dispersion of the large diameter values and conclude that by separating the 

touched objects, the mean size decreases and the size distribution reduces in broadness. 

Segmentation by Wavelet-FCM approach brings the PSD closer to the reference than by 

threshold method. 

 

  

 
Figure 2.8: Particle size distribution of: (a) Manual measurement, (b) Segmentation using 

thresholded method and (c) Segmentation using Wavelet-FCM approach. 

 

 

(a) (b) 

(c) 
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It is also interesting to compare the partition results using the wavelet transform method 

instead of the median filter method as reported in [1]. The partition results using median filter 

method can be seen in Figure 2.7b. Particle 1 in Figure 2.7b cannot be separated by median 

filtering technique but it was successfully separated in Figure 2.7a. The noise in the original 

image has not been removed completely by the median filter and the remaining noise was 

considered as misleading information for the FCM analysis. Wavelet transform can eliminate 

enough noise and capture meaningful information. From this point of view, the introduction of 

the wavelet transform improves the segmentation of particle images 

 

2.6 Architecture of the Image-Based Controlling and Monitoring Framework 

Following the successful separation of touching and overlapping areas in particle images 

using Wavelet-FCM, we propose the use of this approach for real-time image-based size 

measurement for particle process monitoring and control applications. Although the 

measurement is estimated from 2D images, statistically meaningful results are attainable via 

analysis of sufficient numbers of images. The basic architecture of a framework for particle size 

control that utilises this technique is presented in Figure 2.9. The monitoring system is shown 

inside the dotted rectangle in Figure 2.9. This architecture comprises a feedback control loop, 

with intensities of images as the measurement inputs, particle size and PSD as the measurement 

output (or the controlled variable), process operational parameters as the manipulated variable, 

and target particle size and PSD as the set point. During online analysis, the measured value of 

the output is compared with the set point value. The difference (tracking error) between the 

output value and the set point value is fed through the controller. If the output value largely 

deviate from the set point value, a control action for modifying process parameters is generated. 
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The most important feature of this feedback control system is that it learns the process behaviour 

through this new image-based measurement as the feedback signal to the controller that 

commands a certain change in the manipulated variable to maintain target process conditions.  

 

 

Figure 2.9: Framework for image-based monitoring and control for particle systems.  

 

For reliable performance, a monitoring system must include components of acquisition, 

storage and processing of the data as well as display and storage of the information content of the 

data. The hardware, software and associated communication interfaces have to suitably 

constitute to satisfy the requirements in terms of speed, scale and interoperability with other 

systems in an industrial environment. In the case of image-based monitoring, the acquired 

images form the primary input data and they are stored in a database. Information of this data is 
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to be extracted and made available in a form required by the process monitoring methodologies. 

The input data repository should be available for different schemes of information extraction and 

have to reach to the performance requirements with respect to storage and retrieval. The data 

base of information extracted from images, such as features of objects, also has to meet similar 

criteria of storage and accessibility by multiple methodologies. The image processing algorithms 

constitute the main software module of the proposed system. The procedures of processing 

images include pre-processing, segmentation and feature extraction. The pre-processing methods 

have to be chosen depending on the kind of degradation the images in a particular system and 

environment are exhibiting.  

 

 
Figure 2.10: GUI for Multi-resolution Fuzzy Clustering method. 
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The procedures of processing images can be visualised and executed through a Graphical 

User Interface (GUI). GUI provides the human interaction with the system for visualization, 

conducting manual analysis and system configuration/management. A sample GUI for the 

current study is presented in Figure 2.10. The interface includes configuring the image 

acquisition setup, selecting the pre-processing and segmentation methods, viewing the images 

when they are analyzed, visualization of feature data in charts or trends curves, and displaying 

the comparison between before and after segmentation. The image size, de-noising methods of 

wavelet transform and median filter, clustering basis of fuzzy range and traditional features can 

be selected through the GUI. Also, the processed image for each stage, size distribution graph, 

the particle numbers of thresholded image and separated image, and the adopted wavelet 

function and decomposition level are shown. 

 

2.7 Conclusions 

An image segmentation approach combing wavelet transform and FCM was proposed 

and applied in the case study of particle image segmentation. This method could successfully 

identify 13 out of a total of 15 objects and it was found to be superior to previous approaches. 

The image was not over partitioned and the particle equivalent diameters and size distribution in 

the separated image were more meaningful. These results attest the potential of an image-based 

particle process monitoring and control system. A feed-back control architecture with the 

proposed measurement methodology has been conceptualised for real-time application. 
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CHAPTER 3. SEPARATION OF TOUCHING AND OVERLAPPING OBJECTS            

IN PARTICULATE IMAGES BY COMBINING INTENSITY AND                  

GEOMETRY CHARACTERISTICS 

3.1 Introduction  

The promising perspective usage of images for process monitoring and control has been 

described in previous chapter. Also the issue of touching and overlapping objects in particulate 

images and its negative effect on image were highlighted. Multi-Resolution Fuzzy Clustering 

Approach to identify touching and overlapping regions was presented in the Chapter 2 as well. 

The motivation for the clustering methodologies was based on the fact that pixel intensity of the 

touching and overlapping regions is distinctly different from that of other regions in the image. 

The touching areas show a similar fuzzy degree of belongs to either backgrounds or objects. The 

approach based on the derived feature ‘fuzzy range’ presented in Chapter 2 shows an effective 

method to identify the touching regions. However, although Multi-Resolution Fuzzy Clustering 

Approach is very effective in identifying touching regions, it is not successful in identifying the 

overlapping regions. 

Recently, an approach for the separation of touching and overlapping objects in 

particulate images by combining intensity and geometric features was proposed by Korath [1] 

and will be used in our approach. The methodology focuses on separating touching and 

overlapping objects in particulate images by making use of both intensity information and 

geometric features of touching and overlapping regions since these areas have distinct 

characteristics on intensity and geometric profiles. Their intensities are relatively low compared 

to these of objects’ bodies, but many not to be low enough to be considered as the backgrounds 

[2]. Pixels from these regions show a higher level of concavity than those from the boundary of 

other regions [3, 4]. The segmentation algorithm starts at detection of valley points whose 

intensity values are between those of objects’ bodies and backgrounds, followed by linking 
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discontinuity valley segments. Geometric features of the boundaries are used as a criterion to 

screen detected valley segments. The final segmentation is then achieved through the extension 

of these segmentation candidates.  

The chapter is structured as follows. Pre-processing, where the image is processed to 

remove noise and other kinds of degradations, is given in Section 3.2. Segmentation including 

thresholding which is basically a classification process where objects of interest are separated 

from the background, detecting valleys which is based on investigating on intensity profiles and 

final separation by combing geometric features, is discuss in Section 3.3. A conceptual 

framework on this methodology and a case study are provided in Section 3.4 and 3.5 respectively. 

Comparisons of segmentation results to watershed and manual analysis are carried out in Section 

3.6 before concluding in Section 3.7. 

 

3.2 Image Pre-Processing 

Almost all acquired images from image acquisition processes suffer from noises due to 

external disturbances such as electrical, thermal and optical variations. Noise removal is an 

indispensable preprocessing step in image processing to obtain accurate information and is done 

by filtering the image in either spatial or frequency domain with corresponding noise removal 

filters. Noise removal filters can be broadly categorized as linear and nonlinear filters [5]. In 

linear filtering, a pixel value is replaced by a linear combination of the pixel values in a small 

neighborhood around that particular pixel. These filters are smoothing filters that smooth out the 

effects of noise. However, smoothing can cause blurring of the images to some extent. In 

nonlinear filtering, the result depends on the relative value of the processed pixel to its neighbors. 

As the type of noise varies from system to system, it is necessary to choose the right kind of filter 
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depending on the specific system under consideration. In this methodology, linear spatial filter is 

used to remove the noise from images under the consideration of capturing intensity features of 

touching and overlapping regions in the next processing step. 

The linear filtering operation requires a filter with a neighborhood size of      . For 

each pixel (   ), its corresponding response of the filter by linear filtering operation is the sum 

of products of the filter and its neighborhood pixels. The important issue which arises while 

attempting image smoothing through linear spatial filtering without losing features of interest is 

about the extent of smoothing. Smoothing the image with Gaussian kernel is the most preferred 

method to solve this problem [6]. The two dimensional Gaussian function is given by: 

 (     )  
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where    is the variance parameter which determines the spread of the Gaussian kernel. The 

filtering operation for the image  (   ) using the above kernel is given by the equation: 
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where   is the smoothened image and ‘ ’ denotes filtering. For digital image which can be 

treated as a discrete function, working with an odd size filter, this equation needs appropriate 

summing notations: 
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The above process approaches unsmoothed image for small values of the parameter   of 

the Gaussian kernel and higher approximations of the image as   increases. Selecting an 

optimum value of   is very critical for obtaining meaningful results from the smoothened image. 

The criterion adopted to arrive at optimal smoothing is the rapid random variations in the pixel 
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values which can be quantified by a measure of disorder like standard deviation or entropy. As 

the image becomes smoother this measure of disorder will become lesser. 

 

3.3 Segmentation 

3.3.1 Thresholding 

Thresholding is a segmentation approach operating in a way of comparing objects’ 

intensity values with a certain threshold value. If only one feature is of interest in an image, 

separating the image into two classes, a foreground and a background, by applying a single 

threshold value is sufficient during the thresholding process. The foreground is those pixels with 

higher intensity values than the threshold value and the upper boundary for thresholding 

implementation is the highest pixel value in the image; otherwise it is the background. This 

process can be described as the following equation: 

   { (   )   } 

   { (   )   } (3.4) 

where    and    represent object and background respectively.   is the threshold value.  (   ) 

is the value of the pixel located in the x
th

 row and y
th

 column. 

In a thresholding algorithm, the threshold value is the significant parameter for 

successfully dividing segments, thus appropriately selecting the threshold value becomes the 

major concern. Otsu’s global thresholding is a method for finding the optimum threshold value 

among the candidates under the circumstance of identification of only two classes in an image 

[7]. The algorithm is performed by comparing the variance within class as the summation of 

weighted variance in each class (Equation (3.5)) with the variance between classes shown in 
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Equation (3.6). The optimum value is the one which can generate the lowest within class 

variance and highest between classes variance.  

  
 ( )    ( )  

 ( )    ( )  
 ( ) (3.5) 

where   and    are the weight and variance. The subscripts       mean within class, 

background and foreground.   represents a threshold value. 

  
 ( )    ( )    

 ( ) 

(3.6) 

The subscript   means between classes. 

 

3.3.2 Separate through Intensity Features 

3.3.2.1 Intensity Features of Touching and Overlapping Regions 

The touching and overlapping regions show distinct characteristics in intensity profile. 

They exhibit valleys where intensity rises on either side with a minimum in between. These 

valleys are different from the object/background boundaries which are more of step changes. The 

slopes of these valleys vary widely depending on the orientation and relative size of the particles 

involved. Some are very rapidly changing while others are relatively slow. Nevertheless, there 

always exists a valley along the regions of touch and overlap. It is this peculiar feature of 

intensity variation to identify the regions of touch and overlap in particle images. 

 

3.3.2.2 Algorithm for Detecting Valleys 

According to the characteristics of valleys, a method which can detect presence of the 

minima based on its depth and over an extended neighborhood would be able to capture the 

valley points effectively. A strategy to trap the valley points is proposed and plotted in Figure 3.1. 

In this process, firstly, the two parameters needed to be fixed are the minimum depth a valley 
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and the size of the search window. The factors influencing these parameters are the extent of 

intensity valley in the touch and overlap regions and the size of objects respectively. Suitable 

values for these two parameters can be decided for a class of images by manual examination of a 

few images from the class. Next, a convolution of scanning image at horizontal, vertical and 

diagonal directions is involved. They can be defined as an Ones vector of    , an Ones vector 

of     , a unit matrix and its mirror matrix respectively, where   is the size of the search 

window. In each loop, the image is processed with appropriate ranking filters to obtain local 

extreme in the search window and points satisfying criteria of minimum depth and equaling the 

minimum value in the neighborhood are stored as a binary image. 

 

 
Figure 3.1. The flow chart of valley detection process 
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The detected valley points can form into three classes. One is dividers which can 

completely divide the joint object along the touch or overlapping regions. The others can be 

categorized as burrows which start from the object boundary and proceed deeper inside the 

object and inner dips which lie along a possible touching or overlapping region but isolate inside 

the object. The burrows contain the information helpful in segmentation but need further 

processing to realize the goal of complete separation.  The inner dips are segment but separated 

from burrows because of disturbances or non-removed noises. Both burrows and inner dips are 

real regions of touching and overlapping in ideal situation. To form more dividers, it is necessary 

to extend burrows or to link burrows with inner dips. However, some of the detected burrows 

and inner dips are disturbances due to the complex of real life. In this scenario, selection of 

burrows becomes necessary. Geometric features of boundary curves can help to select burrows. 

Disturbances of inner dips can be dealt by morphological operations after new dividers being 

formed. 

 

3.3.3 Separate Combining Geometric Features 

Touching and overlapping regions do have distinct characteristics on intensity profile, 

such as relative low intensities than object itself. However, points which satisfy this condition 

may not all belong to touching and overlapping regions. A typical reason can be the roughness of 

object surface.  A method to solve the problem of distinguishing real touching/overlapping 

regions and disturbances resorts to geometric profile. 

 

3.3.3.1 Geometric Features of Touching and Overlapping Regions 

The touching and overlapping regions also show different features in geometric profile of 

their boundaries. Whenever objects touch or overlap, the regions where the boundaries of the 
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objects touch has a high level of concavity. Moreover, the wedges formed on both sides of a 

touch/overlap are oriented in opposite directions. Such sharp magnitude and orientation of the 

concavity of boundary curves can be quantitively captured by the concept of center of gravity 

(COG) and local eccentricity [3]. For a particular pixel on the boundary, the coordinates of COG 

are calculated by the following formulas: 

     
 

 
∑  

 

   

 

     
 

 
∑  

 

   

 

(3.7) 

where xi and yi are relative coordinates of the N neighboring points (also lying on the boundary) 

with respect to the particular boundary pixel i. Then the eccentricity is calculated as: 

  √    
      

 
 

(3.8) 

The orientation vector of COG relative to the pixel under consideration is represented by 

its coordinates (    ,     ). Figure 3.2 depicts the concept of COG and its orientation. 

 

 
Figure 3.2. Orientation Vector and Centre of Gravity of a pixel on object boundary (Korath, 

2008) 
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Eccentricity is the distance from the point on the boundary to its COG or in other words, 

the length of the orientation vector as shown in Figure 3.2. The higher the value of the 

eccentricity, the stronger the indentation on the boundary curve is. The eccentricity of the 

touching and overlapping regions will have a very high value compared with that from other 

regions in the boundary. Locations on the boundary where their eccentricities are above a certain 

value are selected as possible regions of crossing between boundaries of touching/overlapping 

objects. 

 

3.3.3.2 Algorithm for Segmentation Combining Geometric Features  

A brief outline for the selection of burrows is given in Figure 3.3. It begins by finding the 

boundary of the binary image obtained from previous valley detection operation which contains 

dividers, burrows and inner dips. To utilize geometry information, the eccentricity of every point 

on the boundary is calculated.  A threshold value indicating high concavity will be chosen to 

determine potential touching/overlapping points on the boundary. Any burrows starting from 

these regions are considered as the real burrows and stored for the process of extension. The tips 

of burrows which are located on the boundary are called as base tips. The others inside the 

objects are front tips.  

The extension of burrows starts from front tips. A step of front tip selection is needed 

when a burrow has more than one front tip. The front tip which has the farthest Euclidean 

distance from the base tip will be chosen. Each of the selected front tips is extended along the 

direction from its corresponding base tip to the front tip in a step by step process. During each 

extension step, four situations may happen to burrows. Figure 3.4 illustrates them from Figure 

3.4a to 3.4d respectively, with an extension step size of 3. First, extended burrows may do not 
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cross any inner dips or burrows or boundaries. Then they will go to the next extension step. 

Second, they may cross with boundaries, in this case extended burrows will be reduced to the 

cross point and the extension stops. Third, crossing of another burrow in the extension process 

leads to formation of a divider. Fourth, they may get connected with inner dips. Then the 

burrows can be automatically extended up to the tip of the inner dips. The redundant parts of 

extended burrows, which cross over the intersection point, will be deleted. The selection of the 

tip of the inner dips depends on the direction between the intersection point and tips. The 

favorable tips will be the ones which deviate least from the burrow direction. Further extension 

starts from the new front tip points. In this way, burrows and inner dips can become dividers. 

 

 
Figure 3.3. Flowchart for burrow selection 

 

3.4 Methodology 

The essential sequence of steps for implementing the proposed methodology for particle 

image segmentation are given in Figure 3.5. An input image is treated as a 2D array of pixel 
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intensities and Gaussian lowpass filter is applied to remove noises but remain intensity and 

geometry features of touching and overlapping regions. The smoothed image is processed in two 

segmentation ways, thresholding and the approach combing intensity and geometry features. A 

base separated image in a binary format is formed (thresholded image) by thresholding method. 

Valley points as the intensity feature of touching and overlapping regions, which have relative 

low intensity compared with object bodies but not low enough be calculated as the backgrounds, 

are detected. The valley points are named into dividers, burrows and inner dips according to their 

locations on object bodies. They then are subtracted from thresholded image, generating a binary 

image containing dividers, burrows and inner dips. Burrows which locate on the boundary of the 

binary image with high eccentricity are chosen to extend. The extension operation can form more 

dividers and they are combined with dividers obtained by intensity feature detection to be 

subtracted from the thresholded image to get the final segmentation image. 

 

 
Figure 3.4. Four situations may happen during extension (step size is 3). 
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Figure 3.5. Methodology combing intensity and geometry features for particle image 

segmentation. 

 

3.5 Case Study 

A sample of particle image, which is the same one used in Chapter 2,  with particle labels 

and a white horizontal line passing through a region of overlap marked by the oval is shown in 

Figure 3.6. The original grey particle image in a JPG format was imported into MATLAB for 

processing. Visual observation reveals a total of 16 particles in this image, all of which are 

sequentially labeled from 1 to 16. The original image has been normalized that all the pixel 

values are in the range of 0 to 1 for the purpose of easy calculation. 

 

3.5.1 Smoothing Strategy on Particle Images 

Although the whole image will go through noise removal steps, the pixels along the white 

horizontal line in Figure 3.6 will give an example of this strategy without losing the features of 
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interest. Figure 3.7 shows the intensity variation along the line. The valley in the intensity profile 

which highlighted by an ellipse indicates the overlapping region. The aim of smoothing is to 

remove noises but keep the valley regions. 

 

 
Figure 3.6. Original image with a horizontal line and particle labels 

  

Figure 3.7. Intensity variation along the horizontal line 

 

The smoothing process starts by filtering the image with Gaussian kernel of spread   = 1 

and then filters the resultant image again with a kernel of increased spread. This process is 

repeated with spread of Gaussian kernel being incremented in a small step of 0.2 each time. The 
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mean value of a measure of disorder (standard deviation or entropy) of the image at every step is 

calculated. This measure of disorder decreases considerably during initial iterations of smoothing 

and as the image gets smoothened, the change becomes less. The percentage change in the 

measure of disorder between two consecutive convolution results is used as the stopping 

criterion for smoothing. When the percent change is less than a predefined value, the smoothing 

is stopped and the result image is used for further processing. In this work, the predefined value 

is set as 0.01 and the smooth iteration stops at the 17
th

 run with the   of 4.2. The change of mean 

value of standard deviation of the pixel intensity for successively smoothened images is shown in 

the graph of Figure 3.8. Figure 3.9 gives the intensity plot along the horizontal line for various 

levels of smoothing (with increasing value of   at several values). Offsets are applied to shift the 

graph vertically for better visual comparison. The arrow is kept as an index to the region of 

overlap / touch. As can be seen from the uppermost graph, which correspond to the condition 

when the percentage change is very less in standard deviation, the curve becomes smooth and 

valley regions corresponding to the touching / overlapping regions are quite well preserved. 

Figure 3.10 gives the smoothed image with   equals to 4.2. 

 

 
Figure 3.8. Changes in the mean value of standard deviation as smoothing progress 
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Figure 3.9. Influences of smoothing on the intensity variations along the horizontal line 

 

 
Figure 3.10. Smoothed image with   = 4.2. 

 

3.5.2 Segmentation by Thresholding on Particle Images 

Performing thresholding operation on Figure 3.10 with Otsu’s threshold value selection 

method generates a binary image as shown in Figure 3.11. The thresholding value calculated is 

0.3255, thus any intensity above 0.3255 is considered as objects, otherwise backgrounds. 

However, in the case where a single particle touches many others, or one particle touching 

another which in turn touching another and so on, the result is one single large object labeled 1 in 
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the binary image rather than many individual particles. This is because that the regions in the 

gray image where the particles touch and overlap appear darker compared to the particle body 

and indeed have lesser intensity relatively but the intensity level in many of those regions is not 

as low as the background level. Hence thresholding alone cannot achieve the goal of obtaining 

individual objects and further segmentation operations are necessary. 

 

 
Figure 3.11. Thresholded image of Figure 3.6 with particle labels 

 

3.5.3 Segmentation Using Valley Points on Particle Images  

When applying the algorithm for detecting valley points on the processed reference 

image shown as Figure 3.10, the two parameters, the minimum valley depth and the search 

window, were chosen as 0.007 and 21 on experience. The neighborhood masks for the search 

along horizontal, vertical and diagonal directions were H (1   21) of 1s, V (21   1) of 1s, and D 

(21   21) as the identity matrix and its left-to-right flip matrix. 2-D order statistic filtering was 

used to find local maximum and minimum values for each pixel. Pixels which generate 

differences of the local extreme less than or equal to  the minimum valley depth were considered 

as flat regions such as the object bodies themselves in this case. The other pixels contain 
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information of large intensity change but only the ones whose values are just the minimum in the 

search window could be the desired points. To reduce the influence of non-removed noises, the 

valley points belonging to the object area which was demarcated by the thresholded image were 

retained and any other (noise) presenting in the background region was ignored. The remained 

valley points are shown in Figure 3.12a. Most of these valley points form lines of connected 

pixels though some are broken due to effect of noise still left in the smoothened image or the 

roughness of the object surfaces.  

Subtracting the valley point image (Figure 3.12a) from the thresholded image (Figure 

3.11) leads to Figure 3.12b. Dividers completely separate some of the joints giving rise to new 

objects, identifying 15 particles. Burrows and inner dips scatter on the objects.  Eye examination 

shows that most of them are disturbances expect the one along the touching area in Particle 12. 

Disturbances happen commonly in real life experiences. An automatic approach, using the 

geometric features of touching and overlapping area, can quantitively identify the real burrows 

from disturbances.  

 

                                    
Figure 3.12. (a) Valley points and (b) Separation result by subtracting the valley points from the 

threshold image. 
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3.5.4 Complete Segmentation Using Geometric Features 

To utilize geometry information, the eccentricity of every point on the boundary for each 

identified particle in Figure 3.12b was calculated. A threshold value determining high concavity 

was set as 1.5 in this case. Burrow selection indicated that burrows in all the detected particles in 

Figure 3.12b were disturbances except Particle 12. Also not all the burrows in Particle 12 were 

real ones; only three were. The selected burrows, A, B and C, are shown in Figure 3.13a (they 

were magnified for better visibility). 

Burrow extension carried out with a step size of 3.  Figure 3.13b gives the extended 

burrows. Burrow A is a kind of divider since its end points 1 and 3 are located at the boundary, 

thus it was not extended. Tip 6 of Burrow B in Figure 3.13a was chosen as the front tip to start 

extension other than tip 5 because tip 6 has the longer distance from base point 4.  Burrow B and 

C connect to each other during extension and form a divider. The extended burrows plus 

previous dividers detected from intensity profile led to the final segmentation. Figure 3.14 shows 

the segmented image after morphology operations to remove the redundant parts of extended 

burrows. 

 

                                   
Figure 3.13. (a) Selected burrows and (b) Extension of selected burrows. (They were magnified 

for better visibility). 

 

(a)                                                                                                    (b) 
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Figure 3.14. Separated image 

 

3.6. Results and Discussion 

The particle number, particle equivalent diameter, and particle size distribution (PSD) are 

considered to characterize particles. The equivalent diameter, defined as the diameter of a circle 

that has the same area of that object, is used to describe the size of the particles. It is counted as 

the number of pixels. PSD provides direct information of the distribution of the equivalent 

diameters in a certain range and their normalized frequencies. The histogram of equivalent 

diameters and their fitting curves through Weibull density probability function are used to 

describe the PSD. The segmentation results by watershed and manual methods are compared 

with those by the proposed algorithm to illustrate the separation efficiency. 

 

3.6.1 Compare with Watershed Method 

The use of watershed segmentation and its variants for separating touching and 

overlapping objects in particle images is reported in literatures [8] and a comparison of the 

results from the present method is made against results from the watershed algorithm. Watershed 

algorithm suffers from the disadvantage of severe over segmentation more so when objects are of 
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irregular shape and the intensity variations are present within the single object as shown in 

Figure 3.15a. The image is severely over segmented that the result is meaningless. To overcome 

this deleterious effect, two variants of watershed algorithm namely, the one based on distance 

transform and the one using pre flooding are normally employed. In the first variant, the distance 

transform of the complement of the binary image is taken and watershed algorithm is applied to 

it. The result is shown in Figure 3.15b. This method is too shape sensitive and fails when 

particles are of irregular shape which is the case for the particle domain of our interest. In the 

other variant, over segmentation is prevented by pre flooding very small minima and enforcing 

minima only at predefined locations with use of markers. Markers for object and back ground 

areas are to be identified first in this method. The object markers were chosen as those pixels 

which belong to the peak on the higher side of the threshold value in the image histogram. Object 

pixels with highest frequency can be a good choice for marking objects. Markers for the 

background are obtained from the thresholded image directly. Using such imposed minima, 

watershed segmentation was done and the result is shown in Figure 3.15c for the reference image. 

Though the level of over segmentation is less than that in other watershed methods, still the 

result is much inferior to that of the algorithm proposed in the present work. 

 

3.6.2 Comparison with Manual Measurement 

The touching and overlapping phenomena will have impact on the count of particles and 

calculated particle sizes since such objects in the thresholded image will be treated as single 

connected components. There were only 5 objects in the as thresholded image in Figure 3.11 and 

the largest object had an equivalent diameter of 768 pixels. The largest object corresponds to the 

central object in Figure 3.6 which consists of a number of overlapped and touching objects. On 
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the other hand, the proposed algorithm decomposes such overlapping and touching objects and 

the effect of this separation is reflected in the number and size of objects in the separated image. 

The image in Figure 3.15 has got 16 objects and the largest object has an equivalent diameter of 

325 pixels. It can be seen that the highly overlapped central object as well as other touching and 

overlapping ones have been decomposed into individual objects by the separation algorithm. 

 

                       
 

 
Figure 3.15. Watershed algorithm: (a) On gray image (b) On distance transform (c) With 

markers. 

 

This algorithm generates segmentation results much close to the actual situation.  Visual 

examination shows that 16 particles contained in the original image and the largest object has an 

equivalent diameter of 330 pixels measured by software AMSCOPE. PSD of the manual 

processed image and separated image are shown in Figure 3.16a and 3.16b respectively. PSD 
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obtained by manual processing (Figure 3.16a) illustrates that a large proportion of particles 

actually have equivalent diameters in the range of 150 to 250 with a small amount of particles 

have sizes between 50 and 150, and between 250 and 350. This proportion and equivalent 

diameter range are considered as a reference for PSD generated via the intensity-geometry 

approach. From PSD for the proposed method (Figure 3.16b), we can find that it is very close to 

the reference.  

 

 
Figure 3.16. Particle size distribution of: (a) Manual measurement, (b) Segmentation using 

proposed approach. 
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3.7. Conclusions 

An approach for segmentation of touching and overlapping areas contained in particle 

images is proposed. A strategy for automatic termination of smoothing process of the image 

based on rate of change of an appropriate measure of disorder like standard deviation of pixel 

intensity is proposed as the noise removal method.  Segmentation includes thresholding, 

detecting and applying intensity features of the touching and overlapping regions, and separating 

combining with their geometric features. Valley points in intensity along the regions of touching 

and overlapping objects are found. The discontinuities in the detected valley lines are reduced by 

linking the segments using perceptual grouping factors of proximity and orientation. Orientations 

of the tips of the segments are determined by a novel approach to get more realistic results. The 

valley lines which do not completely cut the joints are extended in an iterative manner subject to 

their suitability of becoming a dividing line based on their orientation and presence of concavity 

on the boundary curve. The proposed method was compared against watershed algorithm and 

gave better results than the watershed methods. It can generate results close to the real situation. 

This approach can be used as a potential monitoring tool for particulate systems. 
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CHAPTER 4. AUTOMATIC IMAGE-BASED ESTIMATION OF TEXTURE ANALYSIS 

AS A MONITORING TOOL FOR CRYSTAL GROWTH * 

4.1 Introduction 

Extracting actuate size information has been brought up as the key issue when 

introducing computer vision system for process inspection application in the first section. 

Touching and overlapping problem in particulate images is common a barrier to obtain real 

information. Chapter 2 proposed the multi-resolution fuzzy clustering approach that can 

successfully deal with touching areas. Advance segmentation algorithms based on taking 

advantage of the characteristics of both intensity and geometry of the touching and overlapping 

regions has been introduced in Chapter 3. As the overlapping problem becomes severe, effective 

and low cost methodologies are in high demand. The following chapters take this challenge.  

Crystallization, as one of the widely used production and separation process, is a typical 

particulate system which provides an excellent challenge to investigate the image-based 

approach for particle characterization.  

The optimization of properties of crystals such as shape, size, orientation and distribution 

plays an important role in chemical, biotechnological and pharmaceutical engineering since they 

determine textural and physical properties of the final commercial products. In recent decades, 

the relationship between the properties of end products and the crystal structure including both 

internal [1] and external has been intensively investigated. Crystal size, as an important external 

crystal structure, can largely influence the textural and physical properties of the final 

commercial products. For example, crystal size can potentially reduce the bioavailability of 

formulated products if it slows down dissolution [2]. Properties of end-product crystals are 

related to process parameters including temperature, flowrate of anti-solvents, seeding variables 

*Portions reprinted from Chemometrics and Intelligent Laboratory System, Copyright 2013 
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 and agitation and so on [3]. In reality, inevitable process disturbances occur during 

crystallization affecting these properties and hence product quality. Monitoring and controlling 

crystal growth by characterizing crystals such as size is critical not only for quality control of end 

products but also for proper design and development of crystallization processes. 

Existing measurement methods of crystal size include sieving analysis, sedimentation 

analysis, sensing zone methods, optical methods, Fraunhofer diffraction, light pulses and image 

particle counters [4]. The sieve method is probably widely used in production environments 

since it requires low technology equipment and the technique is simple and relatively 

straightforward. However, it has disadvantages such as needs of a relatively long preparation and 

measurement time, making limited application in on-line control and monitoring, and generating 

inaccurate results when dealing with samples containing excessive agglomeration [5]. 

Sedimentation analysis, sensing zone methods, optical methods, Fraunhofer diffraction and light 

pulses for determining size are based on a crystal suspension. The properties of the fluid in 

which crystals are dispersed, for example, density, viscosity, the degree of crystal agglomeration 

in the fluid, affect analysis accuracy. The concentration of the suspension is a considerable factor 

when using those methods. For example, optical techniques are constrained by the concentration 

of the suspension which render on-line measurement of crystal size feasible only if at dilute 

concentrations [4]. 

Digital images obtained from on- or off-line cameras, have become a powerful 

measurement tool due to developments in high speed digital imaging devices, equally powerful 

computers at reasonable costs and the adaptability to real-time application [6]. The determination 

of crystal mean size can be achieved by manual and automatic methods. Manual method, 

counting and measuring crystals by hands (using especial software), involves tedious and 
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arduous physical work and is time consuming. Automatic counting and size measurement 

techniques for a given image, on the other hand, are more interesting and practical especially for 

on-line process control and monitoring applications. Dalziel et al [7] developed an image 

analysis system for crystal sizing depending on the crystals’ roundness. This system works well 

if single crystals can be recognized, but would not perform well when clusters of crystals and 

overlapping and touching crystals exist. Mhlongo and Alport [8] proposed a crystal size 

prediction technique using wavelet analysis and an artificial neural network. The mean 

percentage error between predicted and actual mean size for crystal images obtained from a 

laboratory crystaloscope immersed in a glycerine solution of sugar crystals was 12.9%. However, 

the concentration of the solution and the scenario of crystals suspended in the solution are 

unknown, making the application rather specific. The SHARC algorithm reported by Larsen et al 

[9] can extract particle size distribution information for moderate solids concentrations but 

declines for high levels of particle agglomeration. Adopting digital images to automatically 

measure size is promising but still faces challenges.  

A key challenge for automatic crystal imaging techniques is the touching and overlapping 

or agglomeration problem existing in crystal images. For low or medium solid concentration 

suspensions, physical dispersion is used to avoid this phenomenon prior to capturing the images. 

This can reduce but cannot eliminate touching and overlapping events because of the fact that 

dispersed crystals will flow together or ecliptically. For high solid concentration suspensions, 

this problem is even more common and no practical algorithm is available for on-line use. 

Reported algorithms for measuring size on individual crystals may not be reliable when the 

touching and overlapping problem happens [10]. Zhang [11] proposed a multi-resolution fuzzy 

clustering approach to segment the touching areas between particles. However, the overlapping 
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problem is very difficult to be solved by this approach or other available computer techniques to 

identify individual crystals [12]. Instead of detecting and characterising every crystal, it is 

possible to extract size information by performing texture analysis on crystals irrespective of 

whether they are individuals or are touching and overlapping each other. It can be shown that 

images for small size crystals have a ‘rough’ texture, while those for large size are relatively 

‘flat’. 

In this chapter, a novel approach is proposed for crystal image texture analysis based on 

combing thresholding and wavelet-fractal-energy algorithms. Thresholding method can quickly 

detect crystal clusters and remove the background based on the intensity value and is a good 

choice for real-time application. Fractal dimension (FD) as the texture analysis parameter [13-

16], estimated through a wavelet-fractal approach [14,17,18], is a useful and quantitative 

analytical parameter to characterize many kinds of complicated self-similar substances in nature. 

Wavelet power spectra have been widely adopted for analysis in chemical fields [11, 19-22]. FD 

provides a non-integer value to describe crystal growth from crystal images from the point of 

view of surface roughness. Generally, the higher the value of the fractal dimension, the more 

rough the surface is. The pre-processing step of subtracting backgrounds eliminates their 

contribution to surface roughness. Furthermore, energy signatures, obtained from the wavelet 

coefficients, are utilized in the approach to build a statistical model towards the estimation and 

prediction of the mean crystal size from images taken along a typical crystallization run. The 

proposed approach can not only provide automatic texture estimation from crystal images but 

also has potential application for future use in on-line monitoring and control of crystal 

production processes. 
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The chapter is organized as follows: The algorithms of thresholding and wavelet-fractal 

are first introduced in detail in Sections 4.2 and 4.3. In Section 4.4, we illustrate the proposed 

methodology using a case study involving a crystal image sample. The results and discussion of 

fractal dimension from crystal images obtained during a crystal growth process are given in 

Section 4.5. Finally, conclusions are presented in the last section. 

 

4.2 Thresholding Method 

Crystal images always contain background information which is removed leaving behind 

only information related to the crystals for the purpose of texture analysis and crystal feature 

extraction. The texture properties of the background such as smoothness can largely affect the 

analysis of the texture of the crystals. For instance, the presence of more background information 

leads to the texture of an image being smoother. In another case, the texture of crystals will also 

be smoother when larger crystals exist in the image. Thus, detecting crystals themselves or 

removing backgrounds are essential to accurately perform texture analysis. Typically, the edges 

of crystals appear darker in crystal images and thus have lower intensity values compared with 

backgrounds and with crystals themselves. Crystals, on the other hand, have similar intensity 

values as the background due to the fact that crystals are transparent and illuminations on both of 

them are similar during the image acquisition process. The threshold method is applied here to 

identify the crystal edges and remove the background. 

 

4.3 Texture Analysis by Wavelet Transform 

On the examination of crystal images, it can be found that crystal size information 

reflects on the intensity variation in a given small neighborhood: images for small crystals 
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contain more variations compared with those for large crystals. Capturing crystal size 

information equals describing these spatial variations in pixel intensities. Implementing texture 

analysis can catch the spatial variations and present them as textural features.  

Wavelet transform, a recent multi-resolution technique, can extract textural 

characteristics from crystal images. It can decompose a signal into several details and an 

approximation. Details carry the characteristic information such as edges of distinct objects 

distinguishing its corresponding signal from others. The approximation, on the other hand, 

usually reflects the intensity variance generated by lighting or illumination [21]. Thus extracting 

features from details is more appropriate than from the approximation. As the number of crystal 

edges is the distinction between small and large crystals in images, texture features can be 

obtained from the point of energy distribution. Wavelet energy signature, the variances of details 

at several scales, is adopted as texture features under the assumption that each texture displays its 

unique energy distribution at all scales. Under the consideration of the combination of energies at 

all scales, fractal dimension which is acquired from the scaling of energies is another texture 

feature. 

 

4.3.1 Wavelet Energy Signature  

After wavelet decomposition, the energy    stored in the detail coefficients at scale 

index   is calculated in the following equation 

   ∑ (    )
 

      

   

 

(4.1) 
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Diving the      on both sides, we get 

  

    
 

∑ (    )
       

   

    
 (4.2) 

where the left-hand side is also equal to the commonly used coefficient variance at scale  , 

which is labeled 〈    
 〉 . According to this expression, wavelet coefficient variance can be 

explained as the average energy wrapped up per coefficient at each scale  . In this context, the 

detail variance is used as the wavelet energy signature. 

 

4.3.2 Fractal-Wavelet Feature 

Fractal dimension (FD) is a statistical real number that measures how complicated a 

fractal is. Fractals are objects that possess self-similar property, where fractals appear identical at 

different scales or numerical or statistical measures of fractals are consistent across scales. The 

reason why FD is selected as the texture feature is that the dynamics of crystal growth follows a 

fractal process [15] and crystals in images exhibit statistical self-similarity in reality. Several 

approaches are available for calculating FD and we here use fractal-wavelet method which 

requires not only wavelet decomposition but also fractional Brownian motion (fBm) model. 

A fBm is a continuous-time Gaussian process defined as a non-stationary and zero-mean 

Gaussian random function shown in the following equation [23]:  
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where    represents the Gaussian process with observation time at 0,   and  .   is the Gamma 

function.  

The Hurst exponent,  , has a value between 0 and 1 characterizing fBm. It is an indicator 

to reflect the smoothness of the fBm function: the higher the Hurst exponent is, the smoother the 

fBm function is. Hurst exponent is directly related to FD via the relationship 

          (4.4) 

Here    is the Euclidean dimension.  

For an fBm, it also scales to wavelet power spectra   (  ) and frequency    such as: 

  (  )    
 (    )

 (4.5) 

where   means the constraint is proportional. Meanwhile, wavelet power spectra   (  )  is 

related to the variance of discrete wavelet coefficients as: 

  (  )  〈    
 〉  (4.6) 

Combing Equation (4.5) with (4.6), and the fact that frequency    is inversely 

proportional to the wavelet scale   , the scaling relationship becomes: 

〈    
 〉    

(    )
 (4.7) 

Computing Hurst exponent, then FD, can be achieved through taking base 2 logarithms 

of both sides of Equation (4.7), showing in Equation (4.8). The logarithmic plot of variance of 

discrete wavelet coefficients provides a method of deciding Hurst exponent from the slope of the 

plot.  

    (〈    
 〉 )  (    )           (4.8) 

where the constant depends both on the wavelet function and the Hurst exponent.  

 

 

http://en.wikipedia.org/wiki/Fractal_dimension
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4.4 Method for Texture Analysis from Crystal Images 

To illustrate the procedures of texture analysis from crystal images, a methodology 

flowchart and a case study on a single image are discussed and implemented in this section.  The 

flowchart provides an explicit and concise schematic view on how this approach operates 

combing thresholding and wavelet-texture algorithms. A case study, including a single image 

taken during an experimental run at the initial crystallization stage, shows the application of the 

methodology step by step. The remaining crystal images at other crystallization stages (samples 

at different time during the crystallization process) were also investigated and their analysis will 

be discussed in the remaining sections. 

 

4.4.1 Methodology 

The essential and sequence of steps for implementing the proposed methodology for 

texture analysis from crystal images are given in Figure 4.1. An input image is treated as a 2D 

array of pixel intensities. A thresholding algorithm is applied for extracting features of interest 

which are the crystal clusters in this work. This is accomplished through a series of three sub-

steps: a) detection of crystal edges by a threshold value differentiating them from the background, 

b) detection of the locations of the crystal clusters with the help of x-y coordinates on the binary 

image of crystal clusters, and c) determining and extracting the intensity values belonging to the 

crystal clusters. The information data of the clusters is then restored into a vector, being 

processed to generate the texture features by means of wavelet-fractal-energy algorithm. In this 

regard, it is first decomposed by wavelet transformation at several levels into details and an 

approximation. The detail from lower decomposition level and the approximation are considered 

as the high and low frequency noise to be removed. The remained details are then used for 
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finding their variance and 2-based logarithm of the variance. The 2-based logarithm of the 

variance at each scale and decomposition scales are then plotted and fitted by a line whose slope 

is used to calculate the Hurst exponent and consequently the FD. The texture features can be 

used for further application such as establishing PLS model for the prediction of crystal mean 

size. 

 

Figure 4.1:  Flowchart of automatic texture analysis on crystal images. 

 

4.4.2 Case Study 

 4.4.2.1 Experimental and Image Acquisition Setup 

An experiment of an anti-solvent crystallization process was carried out, through the 

combination of the two main variables which can influence the speed of crystal growth 

(temperature and anti-solvent flowrate). In this study, the temperature was 30°C and anti-solvent 

flowrate was 1.5mL per min. The initial solution comprises 34g of NaCl with reagent grade 
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purity of 99.9% and 100g of deionised water. The solution was added into a 1L Erlenmeyer flask 

which was immersed into an isothermal temperature bath and mixing was provided by a 

magnetic stirrer. Ethanol whose regent grade is 190 proof was added with a constant flowrate to 

the stirred solution using a peristaltic pump. 5 mL solution samples at 20min, 30min, 60min, 

90min, 120min, 180min, 240min, 360min and 480min (labelled as Stages 1 to 9) were taken and 

filtered over filter paper with a vacuum pump and dried for further processing.  

A laboratory scale software/hardware framework for capturing crystal images for this 

case study was setup. The experimental setting utilizes a USB microscope camera (model 

MD900) with a resolution of 2592 x 1944 pixels, which fits into the side tube on the side of the 

microscope with one of the supplied adapters and connects to a computer. The AMSCOPE 

software is utilized to capture images and for manual measurement (individual particle analysis). 

The magnification used is 25x which corresponds to 0.775 Microns/pixel. This conversion factor 

was used to manually measure individual crystal sizes on each image. At each crystal growth 

stage, a set of 7 images capturing different amount of crystals were utilized.  

 

4.4.2.2 Fractal Dimension Estimation 

A sample image from stage 1 is used to illustrate the method of FD estimation from 

crystal images. The original grey crystal image in TIF format was imported for image analysis. 

The original grey crystal image was compressed and cropped with Microsoft Office Picture 

Manager into a size of 700*760 in JPG format as shown in Figure 4.2a to improve execution 

time for further analysis. Then the cropped image was imported in Matlab for image analysis, 

wavelet analysis and PLS modelling. To make calculations simpler, the image intensities have 

been normalized with intensity value into a range of 0 to 1. The normalized image then 
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underwent thresholding and morphological operations to detect crystal clusters. Otsu’s method 

generated a threshold value of 0.5020 for the normalized image; implying pixels with intensity 

value below 0.5020 belong to edges. Threshold method gave birth to a binary image shown in 

Figure 4.2b. The holes presented in the edge detection binary image correspond to crystal bodies 

in the original image. A morphological operation was used to fill the holes and generated the 

image shown in Figure 4.2c (crystal cluster binary image) which provides the location 

information of crystal clusters. 

 

  

  
Figure 4.2: (a) Pre-processed, (b) Edge detection binary image, (c) Crystal clusters binary image, 

(d) Crystal clusters image. 

(a) (b) 

(c) (d) 
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The locations of each crystal cluster in crystal cluster binary image are the same as those 

in the original image since the size of the former image is the same as the latter. Identifying 

crystal clusters or subtracting backgrounds was achieved through determining the locations of 

crystal clusters and storing them in an empty image. The detected crystal clusters are depicted in 

Figure 4.2d. 

The intensities of the crystal clusters were then rearranged in a sequence of the same 

column order connecting with the next row as a vector with a length of 113699. The 

rearrangement transfers the 2-D image problem into 1-D problem. The intensity vector was the 

input data for the wavelet-fractal analysis. 

The wavelet function and decomposition level are the two parameters for wavelet 

transformation. In this study, wavelet function ‘db3’ was chosen and decompositions at five 

levels were performed. The transformation results can be written in the form: 

W= {cd1, cd2, ….cd5, ca5} (4.9) 

where, W represents the signal data and cd and ca are details and approximation respectively. 

The subscript number indicates the decomposition level. We select details cd2 to cd5 for further 

analysis because cd1 contains the high frequency noise and ca5 captures the low frequency noise 

as non-uniform illumination. The variance of the detail coefficients and their 2-based logarithm 

were calculated as listed in Table 4.1. Performing a least-square linear fit for 2-based logarithm 

of the detail variance and its corresponding decomposition level, as shown in Figure 4.3, we 

found the slope was 1.94.  Using equations (4.8) and the previously calculated slope, we 

calculated the Hurst exponent to be 0.47 and FD, according to equation (4.4), to be 1.53 when 2 

was adopted as the Euclidean dimension for 1-D situation. 
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Figure 4.3: log2(detail variance) against decomposition level plots with the linear fitted line. The 

Hurst coefficient can be obtained through the fitted equation. 

 

Table 4.1: Detail variance and its 2-base logarithm at four decomposition level 

Decomposition 

level 
2 3 4 5 

Detail Variance 0.004 0.032 0.108 0.219 

2-based 

logarithm of 

detail variance 

-8.075 -4.958 -3.216 -2.190 

 

4.5 The Relationship between Fractal Dimension and Crystal Growth 

This section focuses on investigating the relationship between the FD (and Hurt exponent) 

and the growth of crystals with the sets of images from nine crystal growth stages during the 

antisolvent crystallization batch (for each sample a total of seven images were used, five for 

training and the remaining two for testing). One sample image at each stage of the crystallization 

process is given in Figure 4.4. The methodology for Hurst exponent/FD determination was 

applied on each image. The mean Hurst exponent/FD for each stage was the average value 

obtained from the set of images for that stage. The mean size for each stage was obtained from 

its corresponding image set which was measured manually by means of the sizing computer 

y=1.94x-11.41 
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software (Amscope


). Polygons were used, choice in the software, to approximate the crystals. 

The length, as the size information, was then transferred into micron units. Averages of the mean 

size for the crystals in the first 5 images were obtained, and provide the manually measured 

mean size in a confidence level of 90%.  

The mean Hurst exponent, mean FD and measured mean size for each stage are listed in 

Table 4.2. Charts for the three prior items are plotted as well in Figure 4.5, distinctly displaying 

their tendency over time. During the crystallization process, the mean Hurst exponent and 

measured mean size increase sharply at the beginning and then increase gradually until they 

reach relatively constant values. The mean FD decreased quickly as time goes by to reach 

another relatively constant value. As expected, the figures illustrate that mean Hurst 

exponent/FD follows a similar/inverse changing pattern to measured mean size.  

 

 
 

 
 

 
Figure 4.4: Sample images during crystal growth. a) to i) refers to stage 1 to 9. 

a b c 

i h g 

f e d 
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Figure 4.5: The change of mean Hurst exponent (a), mean FD (b), and manually measured mean 

size (c) during crystallization. 

 

Table 4.2: The mean Hurst exponent, mean FD and manually measured mean size at each 

growth stage. 

Stage 
Mean Hurst 

Exponent 

Mean Fractal 

Dimension 

Manually Measured 

Mean Size(µm) 

1 0.47 1.53 80 

2 0.52 1.48 96 

3 0.66 1.34 108 

4 0.68 1.32 111 

5 0.72 1.28 118 

6 0.74 1.26 134 

7 0.73 1.27 130 

8 0.73 1.27 136 

9 0.71 1.29 132 

 

4.6 Conclusion 

An image-based approach of texture analysis combining thresholding and wavelet-fractal 

for crystal growth monitoring was proposed and applied on a case study. This method could 

(a) (b) 

(c) 
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successfully and automatically identify crystal clusters and estimate the texture by means of FD 

and wavelet energy signature. The FD transformation tendency during the crystallization process 

had been investigated with the results that FD decreases fast at the beginning of crystallization 

and slowly as time goes by. The changing pattern of FD and crystal mean size during crystal 

growth was compared showing their similarity.  
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CHAPTER 5. MULTI-RESOLUTION-MULTIVARIATE STATISTICAL IMAGE 

BASED APPROACH FOR CRYSTAL MEAN SIZE 

PREDICTION/CHARACTERIZATION* 

5.1 Introduction 

Texture analysis on particle clusters is appropriate on characterizing the crystal size if the 

overlapping problems are severe in images.  Chapter 4 illustrates the algorithms of extracting 

size features by performing texture analysis. Wavelet energy signature, Hurst exponent and 

fractal dimension are used as the size features. However, those features are less direct and 

commonly used to represent size than length or diameters. Models that can link the statistical 

features and length will be welcome and required. Also it will be interesting to develop models 

that can monitor processes by using these statistical features without transfer them into length.  

The paper is structured as follows. The multi-resolution-multivariate-statistics prediction 

methodology is provided in Sections 5.2, with Section 5.2.1 illustrating the sequence of steps for 

implementing the proposed methodology and the application in Section 5.2.2. The multi-

resolution-multivariate-statistics prediction methodology is provided in Sections 5.2, with 

Section 5.2.1 illustrating the sequence of steps for implementing the proposed methodology and 

the application in Section 5.2.2. Section 5.3 develops multi-resolution-multivariate-statistics 

detection models, including illustration of principle component analysis, the architecture of 

corresponding methodology and the case study. Finally, Section 5.4 gives a conclusion. 

 

5.2 Crystal Mean Size Prediction 

Given the fact that mean Hurst exponent/FD has a similar/inverse change pattern to 

measured mean size during crystallization process from the Section 4.5, it is attractive to 

investigate the relationship between Hurst exponent/FD and measured mean size and then to  

*Portions reprinted from Chemometrics and Intelligent Laboratory System, Copyright 2013 
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predict crystal mean size with new data. In this regard, partial least squares (PLS) regression, is 

used to find the linear relations between two blocks of data. PLS has been shown to be an 

effective prediction tool [1]. In this section, a PLS model will be established to find the linear 

relationship between Hurst exponent/FD and measured mean size and this model will be used to 

predict mean size as new information (new images) arrive at different sampling times. The 

overall architecture of the approach is illustrated in Figure 5.1, where both the training and 

testing steps are clearly described. 

Figure 5.1: Overall architecture of mean size prediction. 
 

5.2.1 Partial Least Squares 

For two blocks of data, the predictor variables X (   ) and the response variables Y 

(   ) which has the same sample number as X does, the PLS model decomposes both X and Y 

as the sum of the outer product of score vectors (  ), or score matrix T (   ), and loading 
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vectors (   or   ), or loading matrix (P (   ) or Q (   )), plus a residual matrix (E or F) as 

shown in the following equations: 

  ∑    
    

 

   

      

(5.1) 

  ∑    
    

 

   

      

(5.2) 

     (5.3) 

where   is the number of principal components satisfying the condition that it is less than or 

equal to the smaller dimension of X and Y.  X and Y are related by sharing the common scores 

which are the projections of X onto a weight matrix W (   ) defining the relationship 

between X and Y. W is calculated through maximizing the covariance between X and Y and 

directly related to eigenvectors of        . The score vectors T are orthogonal while the weight 

matrix W is orthonormal, that is: 

  
             

  
                   

             (5.4) 

The loading matrix P and Q, on the other hand, are not orthonormal any more compared 

with PCA model because of the constraint in finding the common scores in the decomposition. 

Combining Equations (5.1), (5.2), and (5.3), a linear model is obtained as: 

              (5.5) 

where, B is the matrix of regression coefficients. Essentially, PLS model captures features in X 

correlated with Y in a linear regression approach and removes redundant information which does 

not correlate with Y.  Furthermore, prediction can be implemented using regression coefficients 

obtained from the PLS model for a new data set Xn. The prediction validity, defined as how well 
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the predicted outcomes obtained from the PLS model fit the actual values; can be confirmed by 

   statistics calculated from equations: 

     
   

   
 

          ∑ (    ) 
 ,     ∑ (     )

 
  (5.6) 

where,   is the average of all actual values    and     is the predicted value.  

 

5.2.2 Application 

As a continuous work of the previous chapter, models are built here using the same 

database (crystal images at 9 stages from the anti-solvent crystallization process with operation 

parameters of temperature at 30°C and anti-solvent flowrate of 1.5mL per min). Two data blocks, 

predictor variables X and response variables Y, need to be determined first when building a PLS 

model for crystal mean size prediction. In our application the texture features (wavelet energy 

signature and Hurst exponent/FD) were selected as the predictor variables and the crystal mean 

size as the response variable. In each set of sample images, the first five were used as the training 

data to establish the model. The predictor variables of the PLS model were stored in X as a 

[45(sample images) x 5(texture features)] matrix shown in Table 5.1, where texture features are 

the wavelet energy signature at decomposition level 2 to 5 and FD. The wavelet energy signature 

is the variance of the detail coefficients in this work. The response variable Y is a vector of 

dimension 45 x 1, where the number of rows is equal to the number of sample images per stage 

(5) multiplied by the number of stages (9). Each value is the manually measured mean size 

(calculated from the 5 images at each stage), and for each stage, the measured mean size is the 

same. Before performing further analysis, both X and Y were normalized as a centered and 

scaled version of X and Y. 
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It is crucial to select the optimal component number for the purpose of maximizing 

predictive significance in the way of capturing the most correlated variables and reducing 

redundancy. Several methods can be used to determine the choice of the number of components 

such as cross-validation, captured variance and so on. In this paper, the selection of components 

was based on the captured variance, which involves calculating the cumulative variance percent. 

Figure 5.2 shows the explained cumulative variance percent for X and Y. Since the first three 

components can capture 99.07% of the variance in the normalized X-block and 77.42% of the 

variance in the normalized Y-block, three components had been chosen for regression analysis in 

this application. 

 

                             
Figure 5.2: The cumulative percent of explained X- (a) and Y- (b) variance. 

 

Implementing PLS regression on normalized X and Y with three principal components 

generates a series regression coefficients B which can be used for prediction. The prediction 

equation or the linear relationship of normalized X and Y in three principal component model 

has been truncated by deleting F which cannot be explained by the three components. With the 

help of truncated linear relationship, regression coefficients and an inverse normalization 

operation, the fitted response values for all 45 sample images were calculated. Fitted response 

(a) (b) 
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values in the same stage had been averaged and considered as the predicted mean size at that 

stage. Fitted response values and the predicted mean size at each stage are listed in Table 5.1.  

The validity of this PLS model is illustrated by comparing predicted (from training data) 

and measured mean sizes at all stages. To illustrate the goodness of prediction and the reliability 

of this PLS model the R
2
 statistics and the plot of predicted and measured value were used.  For 

the present study a value of 93.13% was obtained. The circles in Figure 5.3 represent the 

scenario for the training data and how they track the diagonal line. The root-mean-square-error 

of calibration (RMSEC) is 5.28, while the standard error of the manually measured mean size is 

19.63. 

Next, the obtained PLS model was tested using new “unseen” data (data not used for 

model training). In this regard, the last two sample images at each crystal growth stage (not the 

one used previously during training) comprise the testing data. The size related information 

hidden in the testing data was again extracted through texture analysis following the same 

procedure as those used for training data and stored it in a matrix X’ displayed in Table 5.2. A 

normalization was operated on X’ to synchronize with the established PLS model. The prediction 

from testing data was calculated using the same regression coefficients B and the similar linear 

relationship of   

  
      (5.7) 

where, is   
 the normalized fitted response vector. Again, the inverse normalization operation 

was performed on   
  to generate the fitted response values which were listed in Table 5.2. The 

average of the fitted response values in each stage was considered as the predicted mean size and 

they were also listed in Table 5.2. A R
2
 statistic of 80.75% was obtained. Figure 5.3 graphically 

depicts the fit of the testing data. The root-mean-square-error of prediction (RMSEP) is 8.85. 
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Table 5.1: Texture analysis results and mean size prediction for training data. 

Stage Sample 
Wavelet energy signature Fractal 

Dimension 

Fitted Response 

Values (µm) 

Predicted Mean 

Size (µm) Scale 2 Scale 3 Scale 4 Scale 5 

1 

Image 1 0.0042 0.0324 0.1081 0.2455 1.53 95 

87 

Image 2 0.0040 0.0320 0.1239 0.2351 1.52 84 

Image 3 0.0055 0.0406 0.1234 0.2067 1.63 68 

Image 4 0.0027 0.0296 0.1162 0.2555 1.41 98 

Image 5 0.0037 0.0322 0.1077 0.2192 1.53 91 

2 

Image 1 0.0034 0.0324 0.1253 0.2787 1.45 94 

92 

Image 2 0.0027 0.0280 0.1002 0.2230 1.46 101 

Image 3 0.0026 0.0294 0.1140 0.2184 1.44 91 

Image 4 0.0042 0.0389 0.1169 0.2153 1.57 77 

Image 5 0.0033 0.0299 0.1091 0.2311 1.49 95 

3 

Image 1 0.0018 0.0210 0.0921 0.2373 1.34 118 

113 

Image 2 0.0019 0.0222 0.1008 0.2690 1.32 118 

Image 3 0.0013 0.0194 0.0896 0.2166 1.28 118 

Image 4 0.0024 0.0259 0.1036 0.2433 1.40 106 

Image 5 0.0026 0.0297 0.1245 0.3032 1.37 103 

4 

Image 1 0.0026 0.0295 0.1206 0.2886 1.38 103 

116 

Image 2 0.0022 0.0251 0.1160 0.2902 1.34 111 

Image 3 0.0017 0.0200 0.0966 0.2857 1.28 127 

Image 4 0.0018 0.0208 0.0924 0.2536 1.33 122 

Image 5 0.0013 0.0177 0.0907 0.2242 1.26 121 

5 

Image 1 0.0010 0.0170 0.1019 0.2135 1.21 113 

121 

Image 2 0.0016 0.0192 0.1005 0.3064 1.25 130 

Image 3 0.0020 0.0247 0.1299 0.3628 1.26 119 

Image 4 0.0022 0.0239 0.1031 0.2636 1.36 114 

Image 5 0.0016 0.0173 0.0825 0.2357 1.31 127 

6 

Image 1 0.0010 0.0145 0.0921 0.2591 1.17 131 

126 

Image 2 0.0021 0.0205 0.0948 0.2627 1.35 122 

Image 3 0.0019 0.0207 0.1015 0.2815 1.30 122 

Image 4 0.0015 0.0189 0.0963 0.2831 1.25 128 

Image 5 0.0015 0.0192 0.1002 0.2916 1.24 128 

(Table 5.1 continued) 
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(Table 5.1 continued) 

Stage Sample 
Wavelet energy signature Fractal 

Dimension 

Fitted Response 

Values (µm) 

Predicted Mean 

Size (µm) Scale 2 Scale 3 Scale 4 Scale 5 

7 

Image 1 0.0014 0.0186 0.0818 0.2340 1.29 127 

127 

Image 2 0.0011 0.0144 0.0781 0.2083 1.25 128 

Image 3 0.0012 0.0144 0.0816 0.2283 1.24 130 

Image 4 0.0022 0.0232 0.1129 0.3458 1.29 126 

Image 5 0.0014 0.0169 0.0902 0.2453 1.26 126 

8 

Image 1 0.0021 0.0201 0.0838 0.2602 1.35 128 

130 

Image 2 0.0022 0.0228 0.0996 0.3072 1.32 126 

Image 3 0.0011 0.0134 0.0715 0.2131 1.23 134 

Image 4 0.0011 0.0134 0.0715 0.2131 1.23 131 

Image 5 0.0010 0.0132 0.0732 0.2009 1.24 129 

9 

Image 1 0.0012 0.0148 0.0693 0.1938 1.29 129 

124 

Image 2 0.0007 0.0114 0.0778 0.2213 1.11 136 

Image 3 0.0018 0.0201 0.0855 0.1958 1.38 114 

Image 4 0.0023 0.0221 0.1027 0.2500 1.37 113 

Image 5 0.0015 0.0168 0.0853 0.2538 1.28 130 

 

The solid line in Figure 5.3 represents the regression line for both training and testing 

data. 

 
Figure 5.3:  Manually measured and predicted mean size. 

RMSEP=8.85 
RMSEC=5.28 
y=0.70x+34.56 
R

2
=0.8892 
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Table 5.2: Texture analysis results and mean size prediction for testing data. 

Stage Sample 
Wavelet energy signature Fractal 

Dimension 

Fitted Response 

Values (µm) 

Predicted Mean 

Size (µm) Scale 2 Scale 3 Scale 4 Scale 5 

1 
Image 6 0.0028 0.0296 0.1058 0.2009 1.48 95 

92 
Image 7 0.0037 0.0316 0.1104 0.2175 1.53 90 

2 
Image 6 0.0028 0.0282 0.1037 0.2102 1.47 99 

97 
Image 7 0.00299 0.0303 0.1145 0.2403 1.45 96 

3 
Image 6 0.00189 0.0241 0.1117 0.2609 1.32 111 

111 
Image 7 0.00158 0.0214 0.1098 0.2296 1.30 110 

4 
Image 6 0.00185 0.0220 0.1048 0.2763 1.30 119 

122 
Image 7 0.00134 0.0174 0.0907 0.2359 1.26 124 

5 
Image 6 0.00160 0.0200 0.1040 0.2395 1.30 116 

116 
Image 7 0.00195 0.0213 0.1046 0.2596 1.33 117 

6 
Image 6 0.00170 0.0201 0.1106 0.3186 1.24 126 

123 
Image 7 0.00191 0.0191 0.0894 0.2284 1.35 121 

7 
Image 6 0.00111 0.0134 0.0789 0.2245 1.22 132 

133 
Image 7 0.00069 0.0115 0.0766 0.2266 1.11 135 

8 
Image 6 0.00177 0.0205 0.0975 0.2398 1.33 117 

128 
Image 7 0.00063 0.0090 0.0596 0.1840 1.14 138 

9 
Image 6 0.00264 0.0250 0.1139 0.3073 1.36 115 

116 
Image 7 0.00250 0.0224 0.0941 0.2562 1.39 118 

 

5.3 Crystal Size Detection  

Another effective and widely used technique for monitoring is multivariate statistical 

analysis tool, principal component analysis (PCA) which transforms a set of correlated variables 

into a set of uncorrelated principal components [2-6]. Because of the multivariate nature of 

images analysis, techniques based on multivariate statistical image analysis have been considered 

[7]. So far, application on crystal images is rare while applications on softwood lumber grading 

[8], coating uniformity assessment for tablets [9], skin quality properties prediction [10], 

characterizing steel surface [11], monitoring and controlling snack food processes [12] have been 

shown to be successful. Those papers applied the whole images at different spectra as the input 
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data for PCA model. However, this technique suffers from a limitation of program execution 

speed when used for process monitoring and control since industrial environments require high 

frequency feedback data. The computational cost of using a PCA model depends on the size of 

the data set. If an image is used as the data, the size of the image affects the computation 

complexity by the cubic order  (  ), where   is the number of pixels of the image [13]. Usually, 

a high resolution image containing more and accurate information has a large size, rendering this 

difficult for online application. Thus, extracting relevant features from images as the input data 

instead of whole images could be an efficient way to reduce data size thus executive time.  

In this section, we propose a multi-resolution-multivariate-statistics based approach for 

crystal size monitoring. The size information is represented as the wavelet energy signatures. 

The multivariate statistical model runs considerably fast since the input data are the wavelet 

energy signatures having a smaller size of the dataset compared with a whole image. Statistical 

control charts with normal operation regions can be built based on images representing normal 

processes which generate target crystal size or size distribution. Size monitoring then is carried 

out by plotting the corresponding points on the statistical control charts when images 

representing unknown processes status are coming. Locations of the corresponding points can 

tell whether the process is operating within specifications (normal status) and quantitively 

describe their deviations from the normal process. 

 

5.3.1 Principal Components Analysis 

PCA is a well-known orthogonal transformation that converts a set of correlated variables 

into a set of new variables that are linearly uncorrelated with each other. The total variability in 

the data set does not change after the transformation and is explained by the uncorrelated 
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variables called principal components (PCs). This transformation is defined in such a way that 

the first principal component captures the greatest amount of variance in the data set. The second 

one has the next greatest variance and so forth. PCA has been used as statistical process control 

tool for process monitoring by plotting control charts which are figures of sampled data over 

time in a format that renders an easy identification of in-control and out-of-control statues [14].  

  

5.3.1.1 PCA Model 

For a given data matrix X (   rows of sample     columns of variables), PCA 

decomposes it as the sum of the outer product of score vectors   , or the score matrix T (     ), 

and loading vectors   , or the loading matrix (P (     )),  plus a residual matrix E as shown in 

the following equation: 

  ∑    
    

 

   

      
(5.8) 

where   is the number of principal components satisfying the condition that it is less than or 

equal to the smaller dimension of X. The score vectors    are orthogonal and describe how the 

samples relate to each other while the loading vectors are    orthonormal and contain 

information about how variables are related to each other, that is: 

  
             

  
                   

             (5.9) 

Usually, several PCs can explain the majority of the total variance because the correlated 

variables carry common information, generating some degree of redundancy among the variables 

in reality. There are many methods that can guide the selection of the number of PCs [15]. 

Among those, one can look at the variance percent explained by each PC and the cumulative 
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variance percent by   PCs. The calculation of the variance percent resorts to the eigenvalue of 

the covariance matrix of the data set X. The cumulative variance percent by   PCs can be 

calculated in the following equation: 

                            
∑   

 
   

∑   
 
   

 
(5.10) 

  

5.3.1.2 Multivariate Performance Monitoring 

If the PCA model is constructed using historical data that represent the normal operation 

or desired status of the process, or in-control behavior, the current and future operational status 

can be referenced against the obtained PCA model. An approach for a multivariate performance 

monitoring strategy involves a reference region or a normal operating region (NOR) on control 

charts. The new status is considered normal when it locates within NOR and vice versa. The 

NOR is established based on normal operating data, producing a fault-free region.  

For a  -dimension plot, called a PC direction chart, whose axes are   orthogonal 

coordinate axes generated by the PCA model if   PCs are selected, the NOR can be constructed 

as an ellipse. The equation is given as the following in two-dimensional data space: 

  

  
 

  

  
   

(5.11) 

where, the semi-major   and semi-minor   axis lengths are multiplications of a statistical 

parameter and the diagonal elements of the covariance matrix of principal components. The 

statistical parameter defines control limits. 

Another commonly employed control charts based on the PCA model uses Q or 

Hotteling’s T
2
 statistics. The former, also known as the squared prediction error of the residuals 

of a new observation, is related to the difference between the new sample and its PCA 
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reconstruction. The Q statistic measures whether the process has shifted outside normal 

operation. The latter, on the other hand, measures the variation within the PCA model calculating 

as the distance between its PCA projection and the centroid of the normal operation data. The 

two statistics can be defined as followings: 

       
  

  
     

    
  (5.12) 

where      and    represent the residual vector and the scores of the i-th observation respectively. 

  stands for covariance matrix for normal operation data. 

The determination of the NOR using Q or Hotteling’s T
2
 statistics depends on the control 

limits for these statistics. The control limit for Q statistics for a confidence level   is given by 

[16]: 

       (
    √   

  
  

    (    )

  
 )

 
   

   ∑   
           

     

   
 

 

     

 

(5.13) 

where    is value for standard normal distribution for confidence level  , and   
  represents the i-

th power of the j-th eigenvalue.  As for Hotteling’s T
2
 statistics, the control limit for a confidence 

level   is [4]: 

    
  

 (   )

   
 (     ) 

(5.14) 

where  (     ) stands for the F-distribution with   and   degrees of freedom and confidence 

level  . If the Q or Hotteling’s T
2
 statistics of a data set locates outside the control limit for a 

specific confidence level then an off-specification condition is detected and corrective actions 

will be required. 
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5.3.2 Methodology for Size Characterization 

The essential sequence of steps for implementing the proposed methodology for 

automatic size detection from crystal images are given inside the dash lines in Figure 5.4. Images 

from an operating process condition (normal condition), representing the desired crystal size, are 

required first from historical data to establish a reference PCA model. Each of the images is pre-

processed to retain objects and remove backgrounds. The intensities of the objects are rearranged 

and stored as a 1D signal vector for wavelet decomposition.  

Wavelet transformation at several scales generates several details and an approximation; 

the details at the smallest scale and the approximation are considered as the high and low 

frequency noise and deleted. Wavelet energy signature for each of the remained details is 

calculated and used as the input variables for PCA model.  The reference PCA model is built 

with the historical data, and generates multivariate control charts such as a PC direction chart, Q 

and T
2
 statistics graph. An NOR in a PC direction char is needed to be defined for detection of 

faults. The NOR for the multivariate charts of Q or T
2
 statistics is the region below confident 

limits in both Q and T
2
 statistics. The size analysis/detection application can be carried out when 

a new image representing unknown size is coming. The image is under the same analysis method 

as the historical data. The wavelet energy signature, Q and T
2
 statistics for the new observation 

are then calculated and plotted onto the multivariate charts to detect whether the point is inside or 

outside the NOR. Any points out of the NOR are then considered as out of specification 

condition. This methodology can be adopted for online crystal size control with the knowledge 

of the relationship between the production parameters and mean sizes by modifying the 

corresponding parameters when an off-specification condition is detected. 
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Figure 5.4: Flowchart showing the steps involved in the proposed size monitoring and control 

technique. 

 

5.3.3 Case Study of Anti-Solvent Crystallization 

To illustrate the methodology of using wavelet transformation and multivariate statistical 

analysis for mean size detection/characterization, a case study was carried out utilising the same 

crystal image database in Section 4. Two topics were investigated in this case study; one is the 

size detection with the aim to characterize crystals in desired and off-specification sizes, while 

the other is monitoring the entire duration of the crystallization process to investigate detecting 

sensitivity in deviation from desired sizes.  
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5.3.3.1 Crystal mean size and size distribution 

The crystal mean size and crystal size distribution (CSD) were measured and plotted 

respectively to quantitively characterize the crystallization process as references for building 

PCA models and understanding control charts. The mean size for each stage was obtained as 

described in Section 4.5. Figure 5.5a gives manually measured mean size during crystallization. 

The mean size grows fast at the first 5 stages and maintains almost stable at the last 4 stages.  

 

 

 
Figure 5.5: (a) Manually measured mean size during crystallization, (b) Fitted CSD for each 

stage. 

(a) 

(b) 
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CSD provides direct information of the distribution of the crystal length in a certain range 

and their normalized frequencies. The histogram of crystal lengths for each stage was plotted and 

fitted with Weibull density probability function. Figure 5.5b shows the fitted CSD curves for 9 

stages. The peak of the fitted CSD curve goes from left to right in x-axis (from low to high in 

crystal size) for the first 5 stages.  For the last 4 stages, it nearly doesn’t change in x-axis. It is 

obvious that any two stages have overlapping areas in fitted CSD. The size of overlapping areas 

can influence the sensitivity of detecting off-specifications: the larger the overlapping area, the 

more similar the two statuses.  

 

5.3.3.2 Size Detection/Characterization 

In most crystal manufacturing processes, a specific mean size with narrow size 

distribution is demanded and crystals that are smaller or larger compared with the required mean 

size need to be paid more attention because large amount of those crystals could lead to the mean 

size deviating the specification or widen the size distribution, and their reliable detection is of 

relevance. A design reflecting real-life scenarios was developed in this work. It should include a 

desired, a negative and a positive deviation from the target statues.  The selection of statues was 

based on mean size and CSD (Figure 5.5). Since the aim of this part is checking whether a PCA 

model can detect size, statues have distinct differences, such as large mean size differences and 

small overlapping area in CSD, are chosen. Crystal mean size at Stage 4 is selected as the desired 

value, and those at Stages 1 (smaller) and 9 (larger) were considered off-specification. Images 

from Stage 4, as historical data, represent the normal status of the process and consequently they 

were adopted to build a PCA model, which was then used as the reference model when testing 

images from Stages 1 and 9 (considered as new arrivals since they didn’t involve in establishing 
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the PCA model). Image analysis was performed before PCA model establishment and the root of 

wavelet energy signature for each detail of the 15 crystal images were provided in Table 5.2.  

The PCA model was established with the wavelet feature matrix X (n    ) whose 

components are listed in Table 5.2 at Stage 4. The size of the matrix decides the computational 

cost at  (  ), where        . The execution time can be substantially reduced compared 

when using the original images. In this work, it takes 6.4 seconds to build the PCA model 

including calculation of the wavelet features.  

The data X was then auto-scaled through dividing each column by its standard deviation. 

Using the cumulative variance percent it was found that the first two PCs concentrate 96.73% of 

the overall variation in the auto-scaled X and thus the first two principal components were 

selected for further analysis and the multivariate monitoring charts can be established. Figure 5.6 

illustrates the first two PCs plot. The blue plus signs represent normal operational conditions. 

The ellipse shown in Figure 5.6 is defined as the normal operation region (NOR) around the 

good data, when a 90% confidence level is used.  

The future process status estimation can be carried out by calculating and plotting 

corresponding points of new arrival data onto the multivariate chart. Two sets of observations, 

images from Stages 1 and 9, are used for this purpose. Following the scaling of the matrix of 

wavelet energy signature of the new observations, PCA projection model provides new scores 

and presents them in Figure 5.6, where green circles are scenarios for Stage1 and black stars are 

for Stage 9. It is distinctively to see that the locations of the scores for the new arrivals are 

outside the NOR ellipse, indicating that the new arrivals stem from abnormal production process. 

Another piece of information in this multivariate chart is that the off-specification conditions 

show well defined patterns.  The points representing large sizes lie left to the NOR ellipse, and 
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those for small size are right above. The orientations for the new arrivals indicate the size 

deviation direction such as position or negative. Pattern recognition and classification techniques 

could then be used to guide the process towards the desired target by implementing proper 

control actions.   

 
Figure 5.6: Multivariate control chart on the first two principal components. Blue (plus), green 

(circle) and black (star) represent medium (desired), small and large size respectively 

 

Similar type of information can be obtained through the Q and Hotteling’s T
2
 statistics. 

The upper boundary of Q and Hotteling’s T
2
 statistics based on the PCA model with confidence 

level of 90% are 0.3209 and 17.48. Q and Hotteling’s T
2
 statistics for the new observations have 

been calculated and plotted in the multivariate control chart (Figure 5.7), in which the NOR is 

defined as the area below limits. Since they all located outside the NOR, they should be 

perceived as off-specifications. Examining the chart in detail, it shows that all of the new 
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observations, no matter how small or large they are, their Q values are always over Qlimit, but 

only some have greater value in Hotteling’s T
2
 statistics.  This implies that Q measure is more 

sensitive to such changes compared to Hotteling’s T
2
.  

 
Figure 5.7: Multivariate control chart on Q and T

2
 statistics. Blue plus, green circle and black 

star represent medium (desired), small and large size respectively. The inset enlarges the bottom 

left corner of the multivariate control chart for better visibility. 
 

5.3.2.3 Deviated Sensitivity Investigation 

As previously discussing about CSD, larger overlapping areas lead to fewer differences 

between two process statuses. It is interesting to investigate whether the proposed approach can 

detect off-specifications at different deviation level among statues. An analysis was performed 

using the proposed image-based strategy to monitor the whole batch during the crystallization 

run. The mean size gradually becomes larger first and then almost stable during crystallization. 

The overlapping level in CSD with the initial stage becomes lower as crystals grow. Sample 

Q limit 

T2 limit 
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images from each stage are shown in Figure 5.8. A monitoring tool box with a simple user 

interface was built in Matlab allowing automatic processing/characterization of all images as the 

crystallization proceeds. 

 
Figure 5.8: PC1 vs PC2 during growth stages. Stage 1 to 9 is blue (plus), blue (circle), red 

(circle), green (circle), black (circle), blue (star), red (star), green (star) and black (star) 

respectively. 

 

In this case, images corresponding to the initial stage (initial nucleation) are considered 

for building the PCA model since this stage can catch all the deviation levels. Subsequent images, 

corresponding to different sampling times were then plotted into the multivariate charts for 

monitoring the growth. The first two PCs captures 96.65% information of all the variables in this 

PCA model.The definition of the normal region with 90% confidence and the statistical control 

limits is shown in Figure 5.8. 4 out of 5 points represent Stage 2 are located inside the confidence 
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ellipse. It makes sense because Stage 2 has the largest overlapping area with Stage 1 compared 

with other stages. For other stages, the algorithm can identify deviations in the PC control chart 

although some points are close to the confidence ellipse. 

 
Figure 5.9: Multivariate control chart Q during growth monitoring test. The signs have the same 

meaning as in Figure 5.8. 

 

Figure 5.9, illustrates the performance of the monitoring tool as the crystallization 

proceeds towards the end of the batch. In this case images are continuously processed (averages 

among the processed images at each sampling stage are given) as they become available. The 

upper boundary of Q statistics with confidence level of 90% is 0.3373. Colours indicate the 

different stages during the crystal growth. Any stage deviates the initial one can be detected since 

it corresponding average Q statistics is above the control limits. An exciting finding is that Q 

statistics increases as crystallization time goes by, which is the similar phenomena of crystal 

Q limit 
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mean size as in Figure 5.5a. Table 5.3 gives the crystal mean size and Q statistics for each stage. 

The application of this finding is to quantitively describe the deviation extent to the target 

operation status (size and CSD). It can also be used as a feature to characterize crystallization. 

We can clearly appreciate that the proposed approach is able to capture the crystal growth thus 

providing a rather simple monitoring tool for his type of operation.  

 

Table 5.3: Crystal mean size and Q statistics for each stage. 

Stage 1 2 3 4 5 6 7 8 9 

Mean size (micrometer) 80 96 108 111 118 134 130 136 132 

Q statistics 0.11 1.12 1.47 1.77 2.10 2.12 2.40 3.42 3.26 

 

5.4 Conclusions 

Multi-resolution multivariate approaches to predict and characterize crystal size in anti-

solvent crystallization operation have been proposed. The approach incorporates advanced image 

pre-processing techniques with texture analysis and multivariate statistical analysis tools in a 

unique way to solve a rather complex characterization problem. The linear relationship of FD 

and crystal mean size had been extracted and built as a PLS model for predicting crystal mean 

size. PCA models were developed to detect size differences and deviations during crystal growth. 

Overall the models provide promising tool for on-line monitoring and controlling a crystal 

production process. 
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CHAPTER 6. IMAGE-BASED MULTI-RESOLUTION-ANN APPROACH FOR ON-

LINE PARTICLE SIZE CHARACTERIZATION 

6.1 Introduction 

The linear PLS model built in Section 5 shows the powerful predictability based on 

crystal images from a single anti-solvent crystallization. However, the limitation of the linear 

model design is that a nominal model may not have the capability of predicting the nonlinear 

processes in the whole operation range. Therefore, the linear models may not be effective when 

the operation strays away from the nominal operation condition. Models that can capture the 

dynamic behaviour of a nonlinear process within the whole operating regime attract attentions. 

This section takes the challenge of developing a globe model for complex nonlinear systems.  

The PCA model in Section 5 can work effectively to maintain normal manufacturing by 

detecting particle mean size deviation giving the condition that the size distribution keeps at the 

same/similar width. Therefore besides mean size, the size distribution needs to be investigated to 

fully understand, monitor and control particulate systems. 

In this section an image-based multi-resolution sensor for online prediction of crystal size 

distribution (CSD) is proposed. The mean and standard deviation of lognormal probability 

density function as the CSD can be predicted through the on-line sensor. In the proposed 

approach, texture analysis (fractal dimension (FD) and energy signatures) as characteristic 

parameters to follow the crystal growth is utilized. The methodology consists of a combination 

of thresholding and wavelet-texture algorithms. The thresholding method is used to identify 

crystal clusters and substrate empty backgrounds. Wavelet-fractal and energy signatures are 

performed afterwards to estimate texture on crystal clusters. Following the texture information 

extraction, a nonlinear mapping consisting of an artificial neural network (ANN) is incorporated 

using as inputs the texture information in conjunction with the available on-line process 



109 
 

conditions (flowrate and temperature). The output data for training the ANN models, i.e. the 

mean and standard deviation of the crystal size distribution, are measured manually at different 

sampling times as well as in a range of operating conditions.  

A fully automated laboratory scale software/hardware framework was setup for image 

acquisition and processing. It includes a system with a flow cell and a pump (through which 

samples are continuously circulated), an illumination system for lighting up the imaged region of 

the flow cell, an optical zoom system for providing magnification and a high speed camera for 

continuous image capture. A software framework developed in MATLAB enables the 

configuration of the image acquisition parameters as well as the processing of the on-line images. 

Validations against experimental data are presented for the NaCl-water-ethanol anti-solvent 

crystallization system.  

The section is organized as follows: The algorithm ANN is first introduced in detail in 

Sections 6.2. In Section 6.3, we illustrate the proposed methodology. A case study is described in 

Section 6.4, including the operation regime of crystallization in Section 6.4.1, the results and 

discussion of fractal dimension from crystal images obtained during crystal growth process at 

different crystallization operation conditions in Section 6.4.2 and the development of predictive 

models for CSD estimation in Section 6.4.3. Finally, conclusions are presented in the last 

section. 

 

6.2 Artificial Neural Network 

The human brain is a system able to elaborate a great number of high complexity 

information. Its cellular units, the neurons, can receive, integer and transmit nervous impulses in 

order to develop some functions such as pattern recognition, perception and movement control. 
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This happens in a time really lower than the fastest computers currently existing. Since this, 

inspired by the biological nervous system, Artificial Neural Networks (ANNs) have been 

explored as mathematical models to process information. As one of the most active research 

sector, ANNs have been successfully applied in fields such as industrial, medical, data mining, 

pattern recognition, classification, signal processing, clustering, financial and many others. This 

is due to the strong ability of ANNs in capturing complex input/output relationships. The 

network is composed by a number of nodes or units connected to the inputs and to the outputs. 

The signals pass throw the connections and are scaled using appropriate weights that are updated 

following an error-correction rule in order to adapt the network to new situations and aims. So, 

according to the brain behavior, the network operates by a learning process [1, 2]. 

A neural network can be seen as a continuous-time nonlinear parallel dynamic system 

that processes information by a connectionist approach [3]. Such connectionism is realized 

through the massive interconnection of artificial neurons which are processing elements. 

According to the signal transmission manner, neural network models can be divided into 

feed-forward and recurrent neural networks for different fields of applications.  

In our work, two feed-forward neural networks (FNNs) are developed to predict the 

variance and the mean size of crystals using as inputs among others, the fractal and the wavelet 

energy obtained by image analysis. FNNs are also known as multilayer networks having a 

layered architecture.  Figure 6.1 gives a topology structure of a three layers network which is 

also the architecture that our case adopted: an input layer   consisting of sensory neurons, a 

hidden layer of computational neurons and an output layer   of target neurons. The hidden layer 

  is connected with the input layer through a transfer function with weights    and biases   , 

as: 
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   (      ) (6.1) 

The output layer has the similar connection to the hidden layer: 

   (      ) (6.2) 

 

 
Figure 6.1: A topology structure of three-layer FNN 

 

Nonlinear transfer functions between layers allow the network to capture the nonlinear 

relationships between input and output. In our case, the input layer and hidden layer take Tan-

Sigmoid transfer function and linear transfer function is used between the hidden layer and 

output layer. The algorithm of the tan-sigmoidal function is: 

  
 

      (   )
   

(6.3) 

And the algorithm of the linear function is: 

    (6.4) 

FNN is a supervised learning method with the error back-propagation algorithm.  The 

behavior of FNNs can be classified into a learning phase and updating the connectionist 

architectures. The input information is processed through the network in a forward direction on a 

layer-by-layer basis with fixed weights and biases. Then the network adjusts itself by updating 
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the weights and biases after the error signal is propagated backward to process information 

meaningfully.  

Training FNN models can be started by firstly normalizing the database including both 

inputs   and targets   into -1 to 1 to improve the training efficiency. The outputs can be reversely 

transformed into the units of the original target data. The data were normalized through the 

following function: 

    
      

         
   

(6.5) 

Where   is a specific element of the original input/target data,      and      represent the 

minimum and maximum values of each row of the input/target matrix, and    is the 

corresponding normalized value. 

Training the net can be started by first randomly initializing the weights and biases. The 

network performance here is defined as the mean square error (MSE) between the network 

outputs and the targets, as: 

    
∑  

 
 

∑(   ) 

 
 

(6.6) 

where,   is a vector of the network errors and   is the total number of targets.  

The training process is actually iterations of minimizing the MSE with respect to weights 

and biases with the steepest descent algorithm. That is updating weights and biases in the 

direction in which the performance function decreases most quickly (the negative of the 

gradient).  Levenberg-Marquardt algorithm with a large value of scale   is a method to 

approximate the steepest descent algorithm and is used in this work.  

  [      ]      (6.7) 
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where,   is the adjusted weights/biases,   is the identity matrix, and   is the Jacobian matrix of 

errors over weights and biases. 

 

6.3 Methodology of Image-Based Multi-Resolution Sensor 

The overall architecture of online crystal size distribution prediction by Image-Based 

Multi Resolution Sensor is given in Figure 6.2. The crystallization can be carried out in a reactor 

with suitable volume and designs that allow temperature detection, anti-solvent addition and 

crystal suspension circulation. To maintain desired crystallization manufacturing parameters, 

temperature and anti-solvent addition speed in this case, control instruments such as feed pump 

or equipment with control function are welcomed. Crystal suspension circulates through a cell at 

which the crystal images are taken by a camera connecting to a microscope and a computer. The 

images will be stored in a database in the computer and gone through image analysis. The 

essential and sequence of steps for implementing the proposed methodology for CSD prediction 

from crystal images are shown in rectangular boxes in Figure 6.2. The sensor needs a 

prerequisite ANN which can be built at several crystallization conditions with corresponding 

images. An input image is treated as a 2D array of pixel intensities. A thresholding algorithm is 

applied for extracting features of interest which are the crystal clusters in this work. This is 

accomplished through a series of three sub-steps: a) detection of crystal edges by a threshold 

value differentiating them from the background, b) detection of the locations of the crystal 

clusters with the help of x-y coordinates on the binary image of crystal clusters, and c) 

determining and extracting the intensity values belonging to the crystal clusters. The information 

data of the clusters is then restored into a vector, being processed to generate the texture features 

by means of wavelet-fractal-energy algorithm. In this regard, it is first decomposed by wavelet 
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transformation at several levels into details and an approximation. The detail from lower 

decomposition level and the approximation are considered as the high and low frequency noise 

to be removed. The remained details are then used for finding their variance and 2-based 

logarithm of the variance. The 2-based logarithm of the variance at each scale and decomposition 

scales are then plotted and fitted by a line whose slope is used to calculate the Hurst exponent 

and consequently the FD. The texture features as well as crystallization parameters can be used 

for further application such as establishing ANN for the prediction of crystal mean size or 

standard deviation. When a new image is coming to the ANN, it goes through the same texture 

analysis procedures and generates the same variables as in the existed ANN. Then the ANN can 

predict the mean and standard deviation. 

 

 

Figure 6.2:Overall architecture of CSD prediction 
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6.4 Case Study 

Following the same ideas as discussed in Chapter 2, a laboratory scale software/hardware 

framework for capturing crystal images for this case study was setup at LSU Process Systems 

laboratory, shown in Figure 6.3a. The main difference, with the previous set-up is that in this 

case the image acquisition is done completely automated on-line during the experimental batch 

at predefined sampling times. The cylindrical crystallizer (Figure 6.3b) is connected to a 

heating/cooling bath (Figure 6.3c). The measurement of the solution temperature is achieved 

through a Resistance Temperature Detector probe which is wired up to the temperature control 

system. The antisolvent is added by a peristaltic pump whose speed is controlled by a computer 

control system (Figure 6.3d). The device for online images capturing is a flow cell made in 

polycarbonate, slide-like shaped, through which the suspension can be circulated from the 

reactor by another peristaltic pump. An optical microscope, which is connected to a camera, is 

used to help to provide crystal images at appropriate magnifications. The online image sampling 

setup is given in Figure 6.3e.  

 

6.4.1 Experiment 

A set of anti-solvent crystallization experiments at both constant and changed conditions 

was carried out with anti-solvent flow rate and temperature as the process parameters. For 

constant conditions, three different values were chosen: 0.7 [ml/min], 1.5 [ml/min], 3 [ml/min] as 

flow rate and 10°C, 20°C, 30°C as temperature. For the changed conditions, the temperature and 

flowrate were changed according to Figure 6.4 respectively. At the startup conditions, the 

crystallizer was filled with the saline solution composed of 100 g of water and 34 g of NaCl. The 

solvent solution was made up of 95% of ethanol and was added by the time to the initial solution 
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using a peristaltic pump. The solution whose temperature was controlled by the heating/cooling 

system was continuously stirred. As for the crystals growth examination, the suspension was 

circulated into the flow cell in an online fashion.  

 

 

                                                          

                                          
Figure 6.3:(a) Image acquisition setup at LSU, (b) Crystallizer, (c) Thermostatic bath, (d) 

Peristaltic pump with the antisolvent reservoir, (e) Online sampling device with the optical 

microscope and the peristaltic pump. 

 

(a) 

(b) 

(e) (d) 

(c) 
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6.4.2 Image Acquisition System 

The experimental setting utilizes a mono USB microscope camera (model A631f) with a 

resolution of 1392 x 1040 pixels, which fits into the side tube on the side of the microscope with 

one of the supplied adapters and connects to a computer. The Basler Pylon software is utilized to 

capture images with a resolution of 1280 x 960 pixels, which are imported into AMSCOPE
®
 for 

manual measurement (individual particle analysis). The conversion factor of microns to pixel is 

0.42 as the magnification was used to manually measure individual crystal sizes on each image. 

Images were taken at different crystallization stages which were listed in Table 6.1 for each 

experiment condition. At each crystal growth stage, a set of at least 10 images capturing different 

amount of crystals were utilized. 

  
Figure 6.4: The curves for changed flowrate (a) and temperature (b) versus crystallization time 

 

6.4.3 The Relationship between FD and Crystal Growth at Different Process Conditions 

This section focuses on investigating the relationship between the FD and the growth of 

crystals with the sets of images from crystal growth stages during the nine constant conditions of 

antisolvent crystallization batches. The methodology for FD determination was applied on each 

image. The mean FD for each stage was the average value obtained from the set of images for 

(a) (b) 
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that stage. An inverse second order polynomial model was used to simulate the trend of the mean 

FD for each crystallization condition.  

 

Table 6.1:  Database from different crystallization conditions and stages 

Condition 

Crystallization stage (min) Temperature 

( ) 

Anti-solvent 

flowrate 

(mL/min) 

10 0.7 
30, 60, 90, 120, 180, 240, 

300, 360,420,480 

10 1.5 
30, 60, 90, 120, 180, 240, 

300, 360,420,480 

10 3.0 
10, 15, 20, 30, 60, 90, 120, 

180, 240, 300 

20 0.7 
30, 60, 90, 120, 180, 240, 

300, 360,420,480 

20 1.5 
30, 60, 90, 120, 180, 240, 

300, 360,420,480 

20 3.0 
10, 15, 20, 30, 60, 90, 120, 

180, 240, 300 

30 0.7 
30, 60, 90, 120, 180, 240, 

300, 360,420,480 

30 1.5 
30, 60, 90, 120, 180, 240, 

300, 360,420,480 

30 3.0 
10, 15, 20, 30, 60, 90, 120, 

180, 240, 300 

changed changed 
20, 30, 60, 90, 120, 180, 

240, 300, 360,420,480 

 

Charts for manually measured mean size and the simulated FD for each stage are plotted 

as well in Figure 6.5 and 6.6, distinctly displaying their tendency over time. During each 

crystallization process, the measured mean size increase sharply at the beginning and then 

increase gradually until they reach relatively constant values. The simulated FD decreased 

quickly as time goes by to reach another relatively constant value. Comparing the mean size for 

all the crystallizations (Figure 6.4), it is found that high flowrate can make crystals grow not as 

much as at low flowrate if the temperature is the same; and crystals don’t grow very much at low 
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temperatures if the flowrate is the same.  Figure 6.5 shows higher flowrate can generate higher 

FD at the end of crystallization with the same temperature. While Figure tells that higher FD can 

come from crystallization at the condition of lower temperature with the same flowrate. As 

expected, the Figure 6.5 and 6.6 illustrate that simulated FD follows an inverse changing pattern 

to manually measured mean size.  

 

6.4.4 ANN Models and Prediction 

6.4.4.1 ANN Model  

The topology structure of BP ANN was designed to be three-layer networks, which 

including several input neurons/variables and one output/target neuron which is the manually 

measured mean size or standard deviation. The gradient and the number of validation checks are 

the training termination criteria. In the case study, 1e-5 and 6 were set. If the gradient becomes 

less than 1e-5, the training process will stop. If the check number goes up to 6, the training will 

stop as well. The optimum weights and biases for a good network performance can then be 

obtained. 

Images from the constant conditions comprise of the training set for the ANN model 

while those from the changed conditions are the testing set. For images coming at the same stage 

from a specific condition, the corresponding outputs, shared the same value. The predicted size 

for each stage from a specific condition was the average of generated values by the ANN model 

for corresponding images. 
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Figure 6.5. Manually measured mean size at different crystallization conditions. 
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Figure 6.6. Estimated FD at different crystallization conditions 
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The prediction validity, defined as how well the predicted outcomes obtained from the 

ANN model fit the experimental values, can be confirmed by the root mean square error (    ), 

   statistics and sum of squared residuals (   ) between    , short for experimental, and     , 

short for predicted values, as: 

     √
∑(        ) 

 
 

(6.8) 

     
∑(       ) 

∑(        ) 
 

(6.9) 

    ∑(        )  (6.10) 

 

6.4.4.2 Prediction of Mean Size and Standard Deviation by ANN 

Four ANN models were built to predict the mean size and standard deviation respectively. 

Standard deviation from the best global model using nonlinear Fokker-Planck Equation [4] were 

adopt as the targets for the latter. The available inputs include temperature, flowrate, sampling 

time, wavelet energy signature at decomposition level 3 to 6, fractal dimension. To investigate 

the influence of the number of inputs, models built were classified into two classes: ANNs with 

and without sampling time. The manually measured mean size was used as the outputs for the 

former. The statistical characterizations of the size prediction for training and testing sets are 

listed in Table 6.2 and 6.3. Figure 6.7 provides the comparison between manually measured 

mean size and the predicted value by the ANN-for-size without sampling time. Likely, the 

prediction validity of standard deviate described statistically is listed in Table 6.4 and 6.5. Their 

comparisons based on the ANN-for-std without sampling time were plotted in Figure 6.8.  
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Figure 6.7: Comparison of manually measured mean size and predicted value for each 

crystallization run by ANN-for-size without sampling time 
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Table 6.2: Statistical parameters of ANN-for-size without sampling time for size prediction for 

both training and testing sets 

Predicted size by ANN RMSE R
2
 SSR 

10 , 0.7ml/min 4.18 91% 174 

10 , 1.5ml/min 9.28 51% 861 

10 , 3.0ml/min 6.66 76% 354 

20 , 0.7ml/min 4.62 88% 213 

20 , 1.5ml/min 8.76 68% 767 

20 , 3.0ml/min 6.23 89% 310 

30 , 0.7ml/min 7.5 89% 564 

30 , 1.5ml/min 11.3 74% 1276 

30 , 3.0ml/min 10.7 75% 912 

Changed conditions 5.62 96% 319 

 

Table.6.3: Statistical parameters of ANN-for-size with sampling time for size prediction for both 

training and testing sets 

Predicted size by ANN RMSE R
2
 SSR 

10 , 0.7ml/min 1.29 99.2% 16.5 

10 , 1.5ml/min 6.53 99.6% 0.81 

10 , 3.0ml/min 1.70 98.4% 23.2 

20 , 0.7ml/min 2.74 96.7% 61.0 

20 , 1.5ml/min 26.4 98.9% 1.63 

20 , 3.0ml/min 7.45 99.7% 0.97 

30 , 0.7ml/min 1.78 99.3% 31.2 

30 , 1.5ml/min 1.02 99.8% 10.5 

30 , 3.0ml/min 0.97 99.8% 7.51 

Changed conditions 3.77 98% 142 

 

Table 6.4: Statistical parameters of ANN-for-std without sampling time for STD prediction for 

both training and testing sets 

Predicted STD by ANN RMSE R
2
 SSR 

10 , 0.7ml/min 2.68 62% 72 

10 , 1.5ml/min 2.67 91% 72 

10 , 3.0ml/min 3.97 45% 110 

20 , 0.7ml/min 1.35 94% 18 

20 , 1.5ml/min 2.62 83% 69 

20 , 3.0ml/min 2.00 92% 28 

30 , 0.7ml/min 1.18 87% 14 

30 , 1.5ml/min 0.97 64% 8 

30 , 3.0ml/min 4.39 60% 135 

Changed conditions 2.12 91% 45 
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Figure 6.8: Comparison of expected standard deviation and predicted value for each 

crystallization run by ANN-for-std without sampling time. 
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Table 6.5: Statistical parameters of ANN-for-std with sampling time for STD prediction for both 

training and testing sets 

Predicted STD by ANN RMSE R
2
 SSR 

10 , 0.7ml/min 0.37 99.8% 1.35 

10 , 1.5ml/min 1.33 91% 18 

10 , 3.0ml/min 2.73 74% 52 

20 , 0.7ml/min 0.27 99.7% 0.74 

20 , 1.5ml/min 1.18 97% 14 

20 , 3.0ml/min 1.44 96% 14.5 

30 , 0.7ml/min 1.16 87% 13.4 

30 , 1.5ml/min 0.59 86% 3.2 

30 , 3.0ml/min 3.01 81% 64 

Changed conditions 2.9 82.99% 84 

 

6.4.4.3 CSD Prediction and Comparison  

The CSD can be assumed to be either normal or log-normal distribution. The probability 

density functions for both the normal (   ) and log-normal (     ) distributions are: 

    
 

√    
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The lognormal distribution has parameters   and  , which can be calculated from the 

mean   and standard deviation   of normal distribution.  

     (   √     ) (6.13) 
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To determine which distribution can well fit the raw data, Shapiro-Wilk method [5] was 

selected to test the normality. In Shapiro-Wilk, the null hypothesis that the data follow a 

normally distributed population is tested. The null hypothesis is rejected if the p-value is smaller 

than a chosen alpha level. In our case, an alpha level of 0.05 was chosen. Table 6.6 shows the 
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number of samples from each run that passed either the normality (N) or log-normality (LN) test. 

The data passed the Shapiro-Wilk log-normality test 64% of the time which was more than the 

normality test pass rate of 0.1% so the data was modeled as a log-normal distribution with a 

corresponding log-normal mean and variance.    

 

Table 6.6: Number of experimental samples that passed normality (N) or log-normality (LN) test. 

 0.7 mL/min 1.5 mL/min 3.0 mL/min Overall 

 N LN N LN N LN N LN 

10 °C 0/10 7/10 0/10 6/10 0/10 7/10 0/30 20/30 

20 °C 1/10 5/10 0/10 7/10 0/10 5/10 1/30 17/30 

30 °C 0/10 7/10 0/10 6/10 0/10 8/10 0/30 21/30 

Overall 1/30 19/30 0/30 19/30 0/30 20/30 1/90 58/90 

 

Table 6.7 and Figure 6.8 gives the lognormal parameters based on both manually 

measured and predicted mean size and standard deviation of counted crystals at each sampling 

time of the crystallization with changed operation conditions. 

 

Table 6.7: Manually measured and predicted lognormal distribution parameters at each sampling 

time from the crystallization at changed operation conditions 

Time 

(min) 
Manually measured 

Predicted (with sampling 

time) 

Predicted (without 

sampling time) 

             

20 4.45 0.43 4.47 0.39 4.50 0.44 

30 4.43 0.55 4.51 0.41 4.55 0.44 

60 4.59 0.471 4.57 0.45 4.57 0.44 

90 4.69 0.47 4.62 0.44 4.67 0.43 

120 4.72 0.47 4.77 0.40 4.77 0.43 

180 4.93 0.40 4.90 0.40 5.01 0.37 

240 5.02 0.37 4.99 0.38 5.05 0.38 

300 5.06 0.35 5.03 0.38 5.05 0.39 

360 5.05 0.36 5.04 0.38 5.02 0.41 

420 5.06 0.34 5.05 0.38 5.02 0.41 

480 5.06 0.34 5.05 0.39 5.00 0.41 
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 Figure 6.9 show how the CSD model predictions compare to the raw histogram 

experimental data and the estimated probability density function (pdf) of the raw data.  They 

show the samples taken at 20, 30, 60, 90, 120, 180, 240, 300, 360, 420 and 480 minutes for the 

crystallization experiment with changed conditions. The image-based multi-resolution sensor 

does a good job of matching both the smoothed data and the raw data histograms. ANN models 

built with sampling time can simulate better than those without sampling time. 

 

6.5 Conclusions 

An image-based approach of texture analysis combining thresholding and wavelet-fractal 

with ANN for the prediction of CSD was proposed and applied on a case study. This method 

could successfully and automatically identify crystal clusters and estimate the texture by means 

of FD and wavelet energy signature. The FD transformation tendency for different crystallization 

operation conditions had been investigated with the results that higher FD can be obtain at higher 

flowrate for a given temperature and at lower temperature for a given flowrate. The pattern of 

FD and crystal mean size for different crystallization conditions were compared showing their 

similarity. The relationship of FD and crystal mean size had been extracted and built as an ANN 

model for predicting crystal mean size as well as for standard deviation. The predicted CSD in 

lognormal probability density function was plotted and compared with experimental data. These 

results attest the potential application of the proposed method for crystal production process 

monitoring and control. 
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Figure 6.9: Comparison of predicted CSD, raw histogram and the smoothed approximation with 

the manually measured lognormal distribution parameters at each sampling time from the 

crystallization at changed operation conditions 
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CHAPTER 7. CONCLUSIONS & RECOMMENDATIONS 

7.1 Conclusions 

This doctoral thesis has focused on the development of algorithms and models for image-

based process monitoring directed at online monitoring of particulate processes such as 

crystallization, comminution and granulation. The present work systematically addressed the 

problems of image acquisition setup, image analysis, feature extraction, statistical 

monitoring/predictive models and experimental validation. Methodologies have been designed 

and proposed, that has direct potential for application in particulate processes in a wide range of 

industries including chemical, pharmaceutical, mineral processing among others to maintain 

desired process performances.   

The proposed methodologies combined tools from different disciplines - specifically in 

the areas of image processing, data mining modelling and process control theory. The main 

contributions are outlined in the following: 

1. Multi-resolution fuzzy clustering approach was developed and implemented for the 

segmentation of touching areas on particle images in Chapter 2. A particle image from a 

laboratory scale online image acquisition system was used to test the validity of the proposed 

method.  Noise removal was achieved through wavelet decomposition while segmentation 

was performed with Fuzzy C-mean clustering. The touching regions can be successfully 

identified and divided by this algorithm.    

2. An algorithm combing the usage of intensity and geometry features of touching and 

overlapping areas was developed and successfully used to separate objects in Chapter 3. The 

overlapping areas show distinct characteristics in intensity, that is their intensity is lower than 

those from objects but not low enough to be considered as those from backgrounds. The key 
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feature of overlapping regions is the existence of a high level of concavity on the boundaries. 

This method was implemented to provide a robust separation and its efficiency was found to 

be superior to existing methods. 

3. An automatic image-based estimation of texture analysis to capture the size information when 

overlapping problems become severe was proposed and performed in Chapter 4. From the 

viewpoint of roughness, as the texture, it will change of rough to flat as crystals grow. The 

texture was represented by statistical measurements such as energy and FD. FD estimation by 

the proposed method was adopted on a serial of crystal images from a crystallization process 

and showed an interesting inverse changing tendency to the manually measured mean size 

during crystallization.    

4. To use the texture information, predictive models and statistical control models were designed 

and built in Chapter 5. The relationship between texture features and the manually measured 

mean size was capture/linked by PLS models which could predict the mean size from new 

coming images. PCA models built based on historical normal process data could tell whether 

the new point representing current process status was on track in mean size. The extent of 

mean size deviation could also be analyzed through PCA models.  

5. An image-based multi-resolution-ANN sensor for online prediction of crystal size distribution 

was designed in Chapter 6. ANNs, as the globe models to be able to be applied on nonlinear 

plant in the whole operating range, was established. Not only the mean size, but also the size 

distribution was predicted by this sensor. The efficiency of the ANNs was confirmed by 

comparing with manually measured parameters.  

6.  
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7.2 Future Work 

There are several ways that future research can extend this dissertation research: 

1. The proposed frameworks for image-based monitoring can be combined with feedback 

controllers and applied to specific particulate processes, or can be used alone to detect failure.  

It would be interesting to compare the control/detection performances by the proposed 

frameworks and by traditional methods. The differences/agreements will help to develop and 

validate the frameworks. 

2. The image-based monitoring frameworks may combine with the non-isothermal 

crystallization model framework, producing a crystallization monitoring and control 

framework. This would incorporate the image-based monitoring frameworks into a model-

predictive controller. It would forecast the mean size set point trajectory throughout the 

process. It would either adjust the antisolvent feed rate or temperature to create a new set 

point trajectory if substantial variation between the measured mean size and the set point 

exists. 

3. The proposed image processing methods including segmentation and texture analysis can be 

extended to various particle size scales with appropriate magnification systems, from nano, 

micro, meso to macro. Thus, these methods can be applied on images from SEM/TEM, 

optical microscope and regular optics.  

4. The executive time of the image-based monitoring sensors may be investigated with the 

needed monitoring stages of an industrial manufacturing process involving particles, either 

accelerating the executive time or designing taken-actions to somewhat delay. This would 

allow the sensors provide in time outputs for the process.   
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