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ON INFINITE STOCHASTIC AND RELATED MATRICES

ANDREAS BOUKAS, PHILIP FEINSILVER, AND ANARGYROS FELLOURIS

Abstract. We study the Lie structure of the set of infinite matrices associ-

ated with bounded operators on ℓ∞ with the property that their row sums
are constant. That includes, in particular, infinite row stochastic and zero-
row-sum matrices. We also consider the compactness of these operators as
related to the Krein-Rutman theorem, we discuss their Abel limits and we

consider their connection to the convergence of Markov chains as well as to
sequence transformations and generalized limits.

1. Introduction

Infinite matrices appear in many areas of mathematics and physics such as
functional equations [21], special functions [25, 26] and quantum mechanics [14].
In fact, Heisenberg’s matrix mechanics was formulated in terms of them. They also
appear in the solution of infinite linear systems of equations [23] and in probability
theory in the form of infinite transition matrices for countable state Markov chains
[19, 27].

One can add, subtract and multiply by a scalar, infinite matrices just like the
more familiar finite matrices. The main difference between finite and infinite
matrices lies in the fact that in order for the product of two infinite matrices to be
defined the entrywise infinite sums must converge. However, even if the products
involved are defined, associativity of multiplication may not hold. Similarly, the
inverse of an infinite matrix, even if it exists, may not be unique. For a review of
the analysis of infinite matrices we refer to [6], [11] and [19].

Most of the problems mentioned above are by-passed when dealing with infinite
matrices corresponding to bounded linear operators on a Banach space. In this
paper we study the structure of the set of infinite row stochastic and, in general,
constant row sum, matrices associated with bounded operators on ℓ∞.

We summarize the contents of the paper. After a section introducing our nota-
tions, Section 3 presents the basic facts about infinite matrices as bounded oper-
ators on ℓ∞. We continue in Section 4 to examine the Lie structure of the ring of
infinite matrices with constant row sums. In particular, the commutator algebra is
identified as the set of matrices with all rows summing to zero. Some of the ideal
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structure is studied as well. Section 5 reviews properties of compact operators, es-
pecially with regard to the Krein-Rutman theorem, the infinite-dimensional analog
of Perron-Frobenius. In Section 6 we review the main theorems on summability
theory and see how they appear in our context. Section 7 concludes the paper
with Abel convergence of powers of a stochastic matrix in the infinite-dimensional
case. Some examples are given in the context of countable state Markov chains.

This paper is an infinite dimensional extension of [4] which dealt with the Lie
structure and other properties of generalized stochastic and zero-sum finite dimen-
sional matrices.

2. Notations and Conventions

For quick reference we list here the notation introduced and used in the subse-
quent sections of this paper. We will work over R throughout.

The main spaces we will be working with are:
ℓ∞: The Banach space of real sequences x = (xi)i∈N with

∥x∥∞ := sup
i∈N

|xi| < ∞ .

ℓ1: The Banach space of absolutely summable real sequences x = (xi)i∈N with

∥x∥1 :=
∑
i∈N

|xi| < ∞ .

We will typically think of ℓ1 sequences as row infinite vectors and of ℓ∞ se-
quences as column infinite vectors.

Our main subject of interest in this paper are infinite matrices related to the
above sequence spaces. Unless otherwise explicitly mentioned the rows of all
matrices considered are assumed to be in ℓ1, i.e. absolutely summable.

We now indicate the families of matrices we will be working with:
B(ℓ∞): The Banach space of bounded linear operators

A : ℓ∞ → ℓ∞ .

B(ℓ1): The Banach space of bounded linear operators

A : ℓ1 → ℓ1 .

B∞: The elements of B(ℓ∞) given by infinite matrices, i.e., rows are in ℓ1,
columns in ℓ∞, with the ℓ1 norms of the rows uniformly bounded.

Sλ: Infinite matrices in B∞ with row sum equal to λ ∈ R.
S =

∪
λ∈R

Sλ ⊆ B∞: Constant row sum infinite matrices.

S0: The vector space of zero row sum infinite matrices.
S1: The vector space of generalized row stochastic infinite matrices.
S+
1 : The set of row stochastic infinite matrices, i.e., the elements of S1 that

have nonnegative entries.
J0: The infinite matrix with all entries of the first column equal to 1 and all

other entries equal to 0.
G: The set of invertible elements of S.
Ŝ1: The set of invertible elements of S1.
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·⊤ will denote the transpose of a matrix or infinite vector.
For ϵ > 0 and x ∈ ℓ∞ define the ϵ-ball B(x, ϵ) := {y ∈ ℓ∞ : ∥y − x∥∞ < ϵ}.
Note that A ∈ B∞ is in Sλ if and only if

AJ0 = λJ0 .

Moreover, a constant row sum matrix is a scalar multiple of a generalized row
stochastic matrix and a zero row sum matrix is a generalized row stochastic matrix
minus the identity.

3. Infinite Matrices as Bounded Operators on Sequence Spaces

A natural extension of the finite dimensional correspondence between linear op-
erators and matrices to the infinite dimensional case is provided by linear mappings
A : ℓ∞ → ℓ∞ of the form [16]

Ax = ((Ax)i)i∈N , (3.1)

where

(Ax)i =
∞∑
j=1

aijxj ; aij ∈ R .

Such mappings are thus represented by infinite matrices

Â = (aij) .

In order for (Ax)i to be finite and for Ax to be in ℓ∞ we require

∥Â∥∞ := sup
i∈N

∞∑
j=1

|aij | < ∞ . (3.2)

Notice that (3.2) implies

sup
(i,j)∈N2

|aij | < ∞ .

We point out that even though an infinite matrix of the form (3.1) satisfying (3.2)
defines a bounded linear operator on ℓ∞ the converse is not true, i.e., not every
bounded linear operator on ℓ∞ is of that form [24].

Proposition 3.1. For each infinite matrix Â = (aij) satisfying (3.2) and associ-
ated through (3.1) with a bounded linear operator A on ℓ∞ we have

∥Â∥∞ = ∥A∥ ,

where ∥ · ∥ denotes the usual operator norm.

Proof. We assume that A and Â are nonzero, otherwise the result is trivial. For
x ∈ ℓ∞

∥Ax∥∞ = sup
i∈N

|(Ax)i| = sup
i∈N

∣∣∣∣∣∣
∞∑
j=1

aijxj

∣∣∣∣∣∣ ≤ sup
i∈N

∞∑
j=1

|aijxj |

≤ sup
j∈N

|xj | sup
i∈N

∞∑
j=1

|aij | = ∥Â∥∥x∥∞ .
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Thus
∥A∥ ≤ ∥Â∥∞ .

Now let ϵ > 0 be given. Pick a row (ai01, ai02, ...) of Â with ℓ1 norm greater than

∥Â∥∞ − ϵ and define a vector

x0 := (x01, x02, ...) ∈ ℓ∞ ; ∥x0∥∞ = 1 ,

by
x0j := sgn ai0j ,

noting that x0 depends on ϵ. Then

∥Ax0∥∞ = sup
i∈N

|(Ax0)i| = sup
i∈N

∣∣∣∣∣∣
∞∑
j=1

aijx0j

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∞∑
j=1

ai0jx0j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=1

ai0j sgn ai0j

∣∣∣∣∣∣ =
∞∑
j=1

|ai0j | =
∞∑
j=1

|ai0j | · 1 =
∞∑
j=1

|ai0j | · ∥x0∥∞ ,

so

∥Ax0∥∞ ≥
∞∑
j=1

|ai0j | · ∥x0∥∞ > (∥Â∥∞ − ϵ) · ∥x0∥∞ .

That is,

∥Â∥∞ − ϵ < ∥Ax0∥∞ ≤ ∥A∥ ,

by definition of the operator norm. Since ϵ was arbitrary, we have

∥Â∥∞ ≤ ∥A∥ .

As shown above,

∥A∥ ≤ ∥Â∥∞ ,

so
∥A∥ = ∥Â∥∞ .

□

Remark 3.2. The all-ones infinite matrix, J , does not play a useful role here as it
does in the finite-dimensional case. It does not satisfy (3.2), also see, e.g., [17], and
J does not correspond to a bounded linear operator on ℓ∞. However, J0 satisfies

∥J0∥∞ = 1

and since, in the notation of (3.2), aij = 1 for j = 1 and aij = 0 for j ̸= 1, J0
corresponds to the bounded linear operator on ℓ∞ defined by

J0(x1, x2, x3, ...)
⊤ = (x1, x1, x1, ...)

⊤ .

The operator norm ∥J0∥ = 1, since for x = (x1, x2, x3, ...)
⊤ ∈ ℓ∞,

∥J0x∥ = |x1| ≤ 1 · ∥x∥∞ ,

with equality achieved for
x = (1, 0, 0, ...)⊤ .

Our first task is to verify that the operators given by matrices form a closed
subalgebra of B(ℓ∞).
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Proposition 3.3. B∞ is a unital Banach subalgebra of B(ℓ∞).

Proof. First note that B∞ is closed under addition and scalar multiplication. Let
Â = (aij) and B̂ = (bij) be two elements of B∞. Clearly Â+ cB̂ is in B∞ for all
c ∈ R. To see that AB is also in B∞ we notice that, by Fubini’s theorem,

sup
i∈N

∞∑
j=1

∣∣∣∣∣
∞∑
k=1

aikbkj

∣∣∣∣∣ ≤ sup
i∈N

∞∑
j=1

∞∑
k=1

|aikbkj | = sup
i∈N

∞∑
k=1

∞∑
j=1

|aikbkj |

= sup
i∈N

∞∑
k=1

|aik|

 ∞∑
j=1

|bkj |

 ≤ sup
k∈N

∞∑
j=1

|bkj | sup
i∈N

∞∑
k=1

|aik|

= ∥Â∥∞ ∥B̂∥∞ < ∞ ,

proving also the sub-multiplicativity of the norm. To show that infinite matrix
multiplication is associative in this case, it suffices to show that the matrix ÂB
corresponding to the operator AB is ÂB̂. Associativity will then follow from the
fact that operator composition is associative. We have, noting that for x ∈ ℓ∞,
Bx ∈ ℓ∞,

((AB)x)i = (A(Bx))i =
∞∑
j=1

aij(Bx)j =
∞∑
j=1

aij

∞∑
k=1

bjkxk

=
∞∑
k=1

∞∑
j=1

aijbjkxk =
∞∑
k=1

(ÂB̂)ikxk ,

with the interchange of summation order justified as in the above steps for AB.
The infinite identity matrix has ∥ · ∥∞ norm one so B∞ is unital. We will show

that it is complete.
If (An) is an operator norm convergent sequence in B∞ and A is its limit, then

(An) is Cauchy so, for n,m ≥ n0

∥An −Am∥ = ∥Ân − Âm∥∞ = sup
i∈N

∞∑
j=1

|an,ij − am,ij | < ϵ .

Then, for each (i, j), for n,m ≥ n0

|an,ij − am,ij | < ϵ ,

so (an,ij) is Cauchy. Let aij be its limit. Then, using (3.1) we may define a linear

operator A′ on ℓ∞with associated matrix Â′ = (aij). We will show that A′ satisfies

(3.2), so it is in B∞, and that (Ân) converges in ∥ · ∥∞ to Â′. Then

lim
n→∞

∥An −A′∥ = lim
n→∞

∥Ân − Â′∥∞ = 0

will imply that

A = A′

so A ∈ B∞.
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For arbitrary N ∈ {1, 2, ...} we have

N∑
j=1

|aij | ≤
N∑
j=1

|aij − an0,ij |+
N∑
j=1

|an0,ij |

= lim
n→∞

N∑
j=1

|an,ij − an0,ij |+
N∑
j=1

|an0,ij |

≤ lim
n→∞

∞∑
j=1

|an,ij − an0,ij |+
∞∑
j=1

|an0,ij | < ϵ+
∞∑
j=1

|an0,ij | .

Since N is arbitrary, we have

∞∑
j=1

|aij | < ϵ+
∞∑
j=1

|an0,ij | .

Taking supremum over i of both sides we conclude that

∥Â′∥∞ ≤ ϵ+ ∥Ân0∥∞ < ∞ ,

so A′ is in B∞. Finally, for arbitrary N ∈ {1, 2, ...} and n ≥ n0 we have

N∑
j=1

|an,ij − aij | = lim
m→∞

N∑
j=1

|an,ij − am,ij | ≤ lim
m→∞

∞∑
j=1

|an,ij − am,ij | < ϵ

since m → ∞ implies m > n0 also. Thus, by the arbitrariness of N ,

∞∑
j=1

|an,ij − aij | ≤ ϵ

for all i, thus

sup
i∈N

∞∑
j=1

|an,ij − aij | ≤ ϵ ,

so

lim
n→∞

∥Ân − Â′∥∞ = 0 .

Therefore, as described above, B∞ is topologically closed. □

We have as well

Proposition 3.4. Acting on the right, on row vectors in ℓ1, matrices in B∞ are
bounded linear operators on ℓ1, i.e., elements of B(ℓ1).
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Proof. For x = (x1, x2, ...) ∈ ℓ1, A ∈ B∞ with corresponding infinite matrix

Â = (aij), for xA we have

∥xA∥1 =

∞∑
j=1

∣∣∣∣∣
∞∑
i=1

xiaij

∣∣∣∣∣ ≤
∞∑
j=1

∞∑
i=1

|xiaij | =
∞∑
i=1

∞∑
j=1

|xiaij |

=
∞∑
i=1

|xi|
∞∑
j=1

|aij |

 ≤

sup
i∈N

∞∑
j=1

|aij |

( ∞∑
i=1

|xi|

)
= ∥x∥1∥Â∥∞ ,

where we have used Fubini’s theorem to interchange the order of summation. □

Remark 3.5. Allen [1], discusses groups of infinite matrices acting on classical
sequence spaces.

4. Lie Structure of Infinite Constant Row Sum Matrices

We now consider those elements of B∞ with constant row sum, S. In addition
to the associated Lie structures we make some observations about maximal ideals
considering the ring structure of S.

For the multiplicative group structure, we consider the invertible elements of
S. These are the infinite matrices Â ∈ S for which there exists an infinite matrix
B̂ ∈ S such that ÂB̂ = B̂Â = I where I is the infinite identity matrix. Such an
inverse matrix B̂ exists if the bounded operator A corresponding to A is invertible
and its operator inverse A−1 is in B∞. The boundedness of the inverse follows
from the fact that ℓ∞ is a Banach space. The infinite matrix associated with A−1

is B̂.

Lemma 4.1. If Â and B̂ are infinite matrices of finite ∥ · ∥∞, then

(ÂB̂)J0 = Â(B̂J0) ,

where J0 is the infinite matrix with all-ones in the first column and zeros every-
where else.

Proof. The i1-th entry of both (ÂB̂)J0 and Â(B̂J0) is

∞∑
m=1

∞∑
k=1

aikbkm ,

where the double sum converges absolutely, as the proof of in Proposition 4.2,∣∣∣∣∣
∞∑

m=1

∞∑
k=1

aikbkm

∣∣∣∣∣ ≤ ∥Â∥∞ ∥B̂∥∞ < ∞ .

□

Proposition 4.2. With the usual infinite matrix multiplication, S is a unital
Banach algebra. Moreover, G is a Banach Lie group.
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Proof. Lemma 4.1 shows that S is closed under multiplication. For, if Â ∈ Sλ and
B̂ ∈ Sµ, then

(AB)J0 = A(µJ0) = λµJ0

so that SλSµ ⊆ Sλµ.
We already know that B∞ is a Banach algebra. We will show that S is closed

in B∞. Let Ân = (aij(n)), n ∈ N, be a sequence in S norm convergent to an

element Â = (aij) ∈ B∞. We will show that Â ∈ S. Let ϵ > 0. Since each Ân is
in some Sλn ⊆ S, we have

∥AnJ0 −AmJ0∥ = |λn − λm|∥J0∥ ≤ ∥An −Am∥∥J0∥
or, since ∥J0∥ = 1,

|λn − λm| ≤ ∥An −Am∥ ,

which is bounded above by any given ϵ > 0 for all sufficiently large n and m. Thus
(λn) is also Cauchy thus convergent to some λ ∈ R. Then∣∣∣∣∣

∞∑
k=1

aik − λ

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
k=1

aik −
∞∑
k=1

aik(n)

∣∣∣∣∣+ |λn − λ| .

Choose n0 large enough so that max{∥Ân − Â∥∞, |λn − λ|} < ϵ/2 for all n ≥ n0.
Then ∣∣∣∣∣

∞∑
k=1

aik − λ

∣∣∣∣∣ ≤ sup
i∈N

∞∑
k=1

|aik(n)− aik|+ |λn − λ|

= ∥Ân − Â∥∞ + |λn − λ| < ϵ

2
+

ϵ

2
= ϵ ,

for all n ≥ n0. Thus
∞∑
k=1

aik = λ ,

so Â ∈ Sλ ⊆ S.
Finally, the set consisting of the invertible elements of a Banach algebra, is

always a Banach Lie group (see p. 82 [12]). □

Corollary 4.3.

[S, S] ⊆ S0 ∩ S .

In particular, S0 ∩ S is a Banach Lie algebra.

Proof. As seen in the above proof, if Â ∈ Sλ and B̂ ∈ Sµ,

(ÂB)J0 = µλJ0 ,

i.e., ÂB ∈ Sµλ ⊆ S and

[ÂB̂, B̂Â]J0 = ÂB̂J0 − B̂ÂJ0 = (λµ− µλ)J0 = 0 ,

so the commutator of two elements of S is a zero row sum matrix in S. By Lemma
4.1 and Proposition 4.2, S0 ∩ S is a vector space closed under the bilinear Lie
bracket operation and its elements satisfy the Jacobi identity. We will show that
it is also a real Banach space. So let (Ân) be a Cauchy sequence in S0. It is then
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Cauchy, thus convergent, in S. Let Â be its limit. We will show that Â ∈ S0. We
have

ÂJ0 = (Â− Ân)J0 + ÂnJ0 = (Â− Ân)J0 .

Thus

∥ÂJ0∥∞ = ∥(Â− Ân)J0∥∞ ≤ ∥Â− Ân∥∞∥J0∥∞ = ∥Â− Ân∥∞ < ϵ ,

for sufficiently large n. Since ϵ > 0 is arbitrary, it follows that

∥ÂJ0∥∞ = 0 ,

so

ÂJ0 = 0 ,

which implies that A is a zero-row sum matrix. □

Corollary 4.4. S1 ∩ S and S+
1 are closed sub-semigroups of S.

Proof. As shown in the proof of Proposition 4.2, a norm convergent sequence in
S1 ∩ S converges to an element of S1 ∩ S, since λn = 1 for all n. Thus S1 ∩ S is
topologically closed. As shown in Corollary 4.3 the product of two matrices in S1

is also in S1. Moreover, by Proposition 4.2, if the two matrices are in S, then so
also is their product. Thus S1 ∩ S is closed under multiplication as well therefore
it is a closed sub-semigroup of S. Since S+

1 is a closed sub-semigroup of S1 ∩ S, it
is also a closed sub-semigroup of S. □

Proposition 4.5. Ŝ1 is a closed subgroup of the Banach Lie group G.

Proof. Since the elements of S correspond to operators on ℓ∞, multiplication is
associative and inverses, if they exist, are unique. We will show that the inverse
of an infinite matrix in S1 ∩ S is also in S1 ∩ S. So let Â ∈ S1 ∩ S be invertible
and let Â−1 be its inverse. Let A : ℓ∞ → ℓ∞ be the bounded operator of the form
(3.1) and (3.2) corresponding to Â. Since ℓ∞ is a Banach space, it follows that
A−1 is also a bounded operator. Since G ⊆ S is a Banach Lie group, it follows
that Â−1 ∈ G so Â−1 ∈ S. Moreover, by Lemma 4.1,

ÂJ0 = J0

implies

Â−1J0 = J0 ,

so Â−1 ∈ S ∩ S1. Thus Ŝ1 is a subgroup of G. Finally, as shown in Proposition
4.2, S ∩ S1 is norm-closed, so Ŝ1 is closed under non-singular convergence. □

There is no infinite dimensional analogue [22] to the famous von Neumann
theorem that a closed subgroup of GL(n,R) is a Lie group. Thus, Proposition 4.5

cannot be used to conclude that Ŝ1 is a Lie group as done in the finite dimensional
matrix case studied in [3] and [4]. Nevertheless, we can prove the following:

Proposition 4.6. Ŝ1 is a Banach Lie group whose Banach Lie algebra is S0 ∩S.
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Proof. Since, S0 ∩ S is a Banach algebra that is also an ideal of S and since each
element of S is of the form I + Â where Â ∈ S0 ∩ S it follows (see page 2 of [13])

that Ŝ1 is a Banach Lie group. To show that the Banach-Lie algebra of Ŝ1, i.e. the
tangent space at the identity element of Ŝ1, is S0 ∩ S, as in the finite dimensional
case [4], we notice that each X ∈ S0 ∩ S is of the form Â′(0) where

Â(t) = I + tX ∈ Ŝ1 ,

with Â(0) = I, where t is in a sufficiently small interval containing 0 so that Â(t)
is invertible, i.e. so that ∥tX∥ < 1. Thus S0 ∩ S is contained in the Lie algebra

of Ŝ1. For the opposite inclusion, suppose that for t in a sufficiently small closed
interval containing 0 we have a smooth path

Â(t) = (aij(t)) ∈ Ŝ1 ,

with Â(0) = I and Â′(0) = X. Then

XJ0 = lim
h→0

A(h)−A(0)

h
J0 = lim

h→0

1

h
(A(h)J0 −A(0)J0) = 0 ,

since

A(h)J0 = A(0)J0 = J0 .

Thus X ∈ S0 ∩ S. □

4.1. Some remarks on ideals of subrings of S. Let J ′
0 = I − J0. Then, for

any Â ∈ S, ÂJ ′
0 = Â − ÂJ0 ∈ S0. Moreover, if X̂ ∈ S0, then J0X̂ ∈ S0 and

J ′
0X̂ ∈ S0. More generally, if X̂ ∈ S, then J0X̂ ∈ S and J ′

0X̂ ∈ S0. We notice
that

I0 = {J0X : X ∈ S0}

is a maximal ideal of S0. Similarly,

I0 = {J0X : X ∈ S1}

is an ideal of S1.
For all Â ∈ S note that J0A is a compact operator. Moreover, every Â ∈ S has

the decomposition

Â = J0Â+ J ′
0Â ,

where J0A is compact. That is,

S ≈ ℓ1 ⊕ S0 ,

where S0 are the matrices in S with zero first row. On S0, products in I0 vanish.
On S1, I0 forms a right-zero semigroup, i.e. (J0A)(J0B) = J0B, for all A,B. Sim-
ilar decompositions hold for each row individually and for arbitrary finite subsets
of rows.
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5. Infinite Constant Row Sum Matrices and Compact Operators

The Perron–Frobenius theorem states that a real square matrix with positive
entries has a unique maximum real positive eigenvalue and a corresponding eigen-
vector with positive coordinates. In particular, if the matrix is row-stochastic,
then we know that the column vector with each entry equal to 1 is an eigenvector
corresponding to the eigenvalue λ = 1 = r(A), where r(A) is the spectral radius of
A. If the multiplicity is one, then the Perron-Frobenius applied to the transpose
says that every irreducible stochastic matrix has a stationary vector, invariant
measure for the corresponding Markov chain, and that the largest absolute value
of its eigenvalues is 1.

The Krein–Rutman [20, 7] theorem is the infinite dimensional generalization of
the Perron–Frobenius theorem.

We recall the definition of a cone in a Banach space.

Definition 5.1. In a real Banach space a closed subset C is a cone provided:
(i) for all λ, µ ≥ 0, u, v ∈ C, λu+ µv ∈ C;
(ii) u ∈ C and −u ∈ C only if u = 0.

The theorem can be stated as follows:

Theorem 5.2. (Krein–Rutman) Let X be a Banach space, and let C ⊂ X be a
convex cone such that C − C := {u− v / u, v ∈ C} is dense in X, i.e. C is a total
cone. Let T : X → X be a non-zero compact operator such that T (C) ⊆ C and
r(T ) > 0 where r(T ) is the spectral radius of T . Then r(T ) is an eigenvalue of T
with a positive eigenvector, i.e., there exists u ∈ C \ 0 such that T (u) = r(T )u.

The role of X and C in the Krein-Rutman theorem will be played in our case,
respectively, by ℓ∞ and sequences in ℓ∞ with nonnegative terms. It is known ([7],
Thm. 19.3) that if X is a Banach space and C is a cone in X with nonempty
interior C◦, then a compact strongly positive operator T : X → X has spectral
radius r(T ) > 0. By strongly positive we mean that T (x) >> 0 whenever x > 0,
i.e that if x ∈ C \ {0}, then T (x) ∈ C◦.

Since compact operators are bounded, the spectral radius of a compact operator
T can be computed with the use of Gelfand’s formula

r(T ) = lim
n→∞

∥Tn∥ 1
n .

The problem of finding sufficient conditions for a linear operator

T : L∞(S,Σ, µ) → L∞(S,Σ, µ)

to be compact, was considered in [9]:

Theorem 5.3. Let (S,Σ, µ) be a positive measure space and let k : S × S → R be
a measurable function for which:
(i) there exists a locally µ-null set N ⊆ S (i.e. µ(A ∩N) = 0 for all A ∈ Σ with
µ(A) < ∞) and a constant M > 0 such that for all s ∈ S \ N : ks ∈ L1(S,Σ, µ)
and ∥ks∥1 ≤ M , where ks(t) := k(s, t);
(ii) there exists a locally µ-null set N ⊆ S such that the set K := {ks : s ∈ S \N}
is relatively compact in L1(S,Σ, µ).
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Then the integral operators

T :L∞(S,Σ, µ) → L∞(S,Σ, µ) ; (Tϕ)(s) :=

∫
S

k(s, t)ϕ(t) dµ(t) ,

T∗ :L1(S,Σ, µ) → L1(S,Σ, µ) ; (T∗x)(t) :=

∫
S

k(s, t)x(s) dµ(s)

are compact.

Proof. The proof can be found in [9]. □

Lemma 5.4. Let X = ℓ∞ and let C be the cone consisting of sequences in ℓ∞
with nonnegative terms. Then

C◦ = {x = (xi) ∈ C : inf
i∈N

xi > 0} .

Proof. To show that

C◦ ⊆ {x = (xi) ∈ C : inf
i∈N

xi > 0} ,

suppose that there exists an x = (x1, x2, ...) ∈ C◦ with infi∈N xi = 0. Then, for
arbitrary ϵ > 0 there exists an index i0 for which 0 ≤ xi0 < ϵ

2 . Therefore

y := (x1, ..., xi0−1,−
ϵ

2
, xi0+1, ...) ∈ B(x, ϵ) ,

because

∥y − x∥∞ = xi0 +
ϵ

2
<

ϵ

2
+

ϵ

2
= ϵ .

But y /∈ C so no such ϵ-ball can be contained in C. Thus x /∈ C◦. For the reverse
inclusion, let x = (xi) ∈ C with infi∈N xi := a > 0. Will show that B(x, a

2 ) ⊆ C
so x ∈ C◦. Let y = (yi) ∈ B(x, a

2 ). Then

∥y∥∞ ≤ ∥y − x∥∞ + ∥x∥∞ <
a

2
+ ∥x∥∞ < ∞

and for each i ∈ N

|yi − xi| <
a

2
=⇒ yi > xi −

a

2
> 0 .

Therefore y ∈ C. □

Proposition 5.5. Let Â = (aij) ∈ S be an infinite matrix. If

lim
n→∞

sup
i∈N

∞∑
j=n

, |aij | = 0

then the linear operator A : ℓ∞ → ℓ∞ corresponding to Â is compact. If aij > 0 for
all i, j and C is the set of ℓ∞ sequences with nonnegative terms, then A(C) ⊆ C.

Moreover, if Â is row stochastic, then r(A) > 0.

Proof. In Theorem 5.3 we let S be N, µ be counting measure [2], and k(s, t) = ast.
Then L1(S,Σ, µ) = ℓ1(N), L∞(S,Σ, µ) = ℓ∞(N) and the only µ-null set is the

empty set. The role of K is played by the set of the rows of Â which is ℓ1-bounded
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since the ℓ1 norm of each row is less or equal to M := ∥Â∥∞. By Theorem 5.3 the
operator T = A, defined on ϕ = (ϕi)i∈N ∈ ℓ∞ by

(Aϕ)i =
∞∑
j=1

aijϕj ,

is compact if the set K is relatively compact. It is known that a bounded subset
K of ℓ1 is relatively compact if and only

lim
n→∞

∞∑
i=n

|ki| = 0 ,

uniformly for k = (ki)i∈N ∈ K (see [8], p.6). In our setting, this is equivalent to

lim
n→∞

sup
i∈N

∞∑
j=n

|aij | = 0 .

If ϕ = (ϕi)i∈N ∈ C ⊂ ℓ∞, then

(Aϕ)i =
∞∑
j=1

aijϕj ≥ 0 ,

so Aϕ ∈ C as well. Finally, if Â is row stochastic then x = (1, 1, ..) is an eigenvector

of Â corresponding to the eigenvalue λ = 1. Thus r(A) ≥ 1 > 0. □

Remark 5.6. Without compactness, strong positivity of A alone is not sufficient to
imply the positivity of the spectral radius of A. That is because for ϕ = (ϕi)i∈N ∈
C \ {0} and Â with positive entries, the standard estimate would be

inf
i
(Aϕ)i = inf

i

∞∑
j=1

aijϕj ≥ inf
k
ϕk inf

i

∞∑
j=1

aij ≥ 0 ,

so we cannot be sure that Aϕ ∈ C◦.

In our context, we have the following simple criterion for compactness.

Proposition 5.7. Let

1 := (1, 1, ...) ; 1n := (1, 1, ..., 1, 0, 0, ....) ; ∥1∥∞ = ∥1n∥∞ = 1 ,

where the last 1 is in the n-th position, n ≥ 1, and let Â ∈ S ∩ S1. If the rows of
Â satisfy the ℓ1-relative compactness condition

lim
n→∞

sup
i∈N

∞∑
j=n+1

|ai,j |

then

lim
n→∞

∥Â1n − 1∥∞ = 0 .

If Â is row stochastic, then the converse holds as well.
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Proof. Notice that for Â = I

lim
n→∞

∥1n − 1∥∞ ̸= 0 ,

since the sequence (1n) is not even Cauchy. So the result is not true, in general,
without the relative compactness assumption. Now

Â1n − 1 = Â1n − Â1 = Â(1n − 1) = (
∞∑

j=n+1

a1,j ,
∞∑

j=n+1

a2,j , ...) ,

so, by the compactness assumption on the rows of Â,

lim
n→∞

∥Â1n − Â1∥∞ = lim
n→∞

sup
i∈N

∣∣∣∣∣∣
∞∑

j=n+1

ai,j

∣∣∣∣∣∣ ≤ lim
n→∞

sup
i∈N

∞∑
j=n+1

|ai,j | = 0 .

Therefore

lim
n→∞

∥Â1n − Â1∥∞ = 0 .

If Â is row stochastic, then its entries are non-negative so

lim
n→∞

∥Â1n − Â1∥∞ = lim
n→∞

sup
i∈N

∞∑
j=n+1

ai,j = lim
n→∞

sup
i∈N

∞∑
j=n+1

|ai,j | ,

which proves the equivalence of the two conditions in that case. □

See Section 7 below for connections with countable state Markov chains.

6. Infinite Stochastic Matrices as Sequence Transformations

A good exposition of the theory of generalized limits of sequences and series of
real numbers can be found in [6].

Starting with a sequence (sk)k∈N, where sk ∈ R, ∀k, and an infinite matrix
A = (an,k)(n,k)∈N2 , we consider the A-transformed sequence (σn)n∈N defined by

σn =

∞∑
k=1

an,ksk .

We are interested in relating the convergence properties of the original sequence
and the A-transformed one. In particular, if the original sequence consists of the
partial sums of a divergent series, it is possible that the A-transformed series will
converge thus defining a generalized or A-limit of the original divergent series.

The basic theorems can be found in [6] and read as follows:

Theorem 6.1. (Kojima-Schur) Let sk → s ∈ R as k → ∞. The A-transformed
sequence

σn :=

∞∑
k=1

an,ksk (n > n0)

converges to a limit σ ∈ R as n → ∞, if and only if
∞∑
k=1

|an,k| ≤ M (for every n > n0) , (6.1)
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an,k → αk ∈ R as n → ∞, for every fixed k (6.2)

and

An :=
∞∑
k=1

an,k → α ∈ R, as n → ∞ . (6.3)

Moreover

σn → αs+

∞∑
k=1

αk(sk − s) as n → ∞ . (6.4)

Theorem 6.2. (Silverman-Toeplitz) Let sk → s ∈ R as k → ∞. The A-
transformed sequence

σn :=

∞∑
k=1

an,ksk (n > n0)

converges to the same limit s ∈ R as n → ∞, if and only if
∞∑
k=1

|an,k| ≤ M (for every n > n0) , (6.5)

an,k → 0 as n → ∞, for every fixed k (6.6)

and

An :=
∞∑
k=1

an,k → 1 as n → ∞ . (6.7)

We may prove the following:

Theorem 6.3. In the notation of Theorems 6.1 and 6.2, let Â = (ank) ∈ S.

(i) If Â ∈ S+
1 and the columns of Â satisfy condition (6.2), then

σn → s+
∞∑
k=1

αk(sk − s) as n → ∞ .

(i) If Â is stochastic and ank → 0 as n → ∞ for each k, then

σn → s as n → ∞ .

Proof. For (i) notice that an S matrix Â satisfies (3.2) so it also satisfies condition

(6.1). Since Â ∈ S+
1 it follows that α = 1 and the result follows by the Kojima-

Schur theorem. For (ii) notice that stochasticity implies that (6.7) is satisfied and
the result follows by the Silverman-Toeplitz theorem. □

Remark 6.4. For example, if Â is doubly stochastic, the columns are summable
and hence converge termwise to 0.

A main example is the arithmetic means matrix

Â =


1 0 0 0 0 · · ·
1/2 1/2 0 0 0 · · ·
1/3 1/3 1/3 0 0 · · ·
...

...
...

...
... · · ·

 ,

corresponding to Cesàro convergence.
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7. Abel Limits and Convergence of Markov Chains

First we discuss entrywise convergence and review properties of Markov chains
on the nonnegative integers. Then we show that for stochastic matrices, conver-
gence of powers always exists in the Abel sense.

Remark 7.1. For the remainder of this paper, indexing of rows and columns begins
with 0.

7.1. Recurrence properties of Markov chains. If we have a stochastic ma-
trix A, we may consider it as the transition matrix for a Markov chain on N =
{0, 1, 2, . . .}. Thus,

Aij = P(probability of jumping from i to j in one step)

and for the nth power

(An)ij = P(probability of jumping from i to j in n steps) .

A fundamental question is to determine the limiting behavior of the entries of the
powers An as n → ∞.

We review the basic properties and how they relate to powers of A. There
are three principal cases. It is assumed that the chain does not decompose into
disjoint systems.

We refer to [18] for criteria mentioned here. In the discussion below, we require
the matrix reduced at i. This means that row and column i are deleted, i.e.,
we are considering the matrix that would be used in forming the ii minor in the
finite-dimensional case.
(i) Positive recurrent case. In this case, the chain visits every state infinitely
often and there is an invariant distribution π = (p0, p1, . . .) with

∑
j

pj = 1 and

(An)ij → pj ,

for all i. Note that π ∈ ℓ1 and
πA = π

is a left fixed point. The Krein-Rutman theorem provides a criterion for positive
recurrence.

Proposition 7.2. If the stochastic matrix A is compact as an operator and strongly
positive, with 1 as a simple eigenvalue, then the associated Markov chain is positive
recurrent and the powers of A converge entrywise

lim
n→∞

(An)ij = pj ,

where pj are positive, summing to 1, providing the invariant distribution of the
chain.

Proof. Recalling our discussion of Section 5, consider A acting on ℓ1 on the right.
Eveson’s Theorem shows that the compactness condition is the same whether
considered as an operator on ℓ1 on the right or ℓ∞ on the left. Now we know
there is an eigenvector for eigenvalue 1, which is the spectral radius, since the
matrix is stochastic. At this point we can invoke Riesz-Schauder theory, [28], since
the operator is compact. Thus, the only non-zero spectrum are eigenvalues and
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the multiplicities of eigenvalues of A and the dual operator, which is stochastic
acting on ℓ∞, are the same. So we have a unique left fixed point in ℓ1. From
Krein-Rutman we know the eigenvector is non-negative, in fact, positive, since
the operator is strongly positive. The entrywise convergence follows from Markov
chain theory. □

Remark 7.3. Some versions of the Krein-Rutman theorem will already provide
that the eigenvalue 1 is simple. The main common feature in all versions is the
existence of the positive eigenvector on the left.

Remark 7.4. In the next two cases the probabilities converge to zero, i.e.,

lim
n→∞

(An)ij = 0 ,

for all i, j. This shows why you can not have a general strong limit theorem, since
An1 = 1 for all n ≥ 0.

(ii) Null recurrent case. In this case, the process is recurrent, i.e., every state is
visited infinitely often, but there is no invariant measure. There is a nonnegative
left eigenvector, but it is not in ℓ1. Reduce the matrix at one (any) state i. Then
one of the following must hold: (1) the reduced matrix has an unbounded right
eigenvector, fixed point or (2) the only nonnegative bounded right fixed point is
the zero vector.

Example 7.5. The reflected random walk provides a good example for this case.
Here the superdiagonal and subdiagonal consist of all 1/2’s except for the entry
in the top row, A01 = 1, reflecting at state 0. That is,

A =


0 1 0 0 0 0 · · ·
1
2 0 1

2 0 0 0 · · ·
0 1

2 0 1
2 0 0 · · ·

0 0 1
2 0 1

2 0 · · ·
...

. . .
. . .

. . .
. . .

. . . · · ·

 .

A left formal eigenvector is (1, 2, 2, 2, 2, . . .), not in ℓ1. Reducing at 0 yields the
unbounded right eigenvector (1, 2, 3, 4, 5, . . .). So the process is recurrent, but
return times to a given state have infinite expectation. The probabilities go to
zero as the system is trying to normalize the weights (1, 2, 2, 2, . . .), which total
infinity.

(iii) Transient case. Here the process goes off to infinity. If there is no nonzero
left eigenvector, the process is transient. If there is a non-normalizable left eigen-
vector, then transience requires the reduced matrix (at any state) have a nonzero,
nonnegative, bounded solution.

Example 7.6. A drifting process illustrates one of the criteria. Take a probability
distribution on N, (p0, p1, . . .), with p0 ̸= 1, so it is not concentrated at 0. Form
the Toeplitz matrix

Aij =

{
pj−i, if j ≥ i ;

0, otherwise.
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It looks like

A =


p0 p1 p2 p3 · · ·

0 p0 p1 p2
. . .

0 0 p0 p1
. . .

. . .
. . .

. . .
. . .

. . .

 .

It is readily checked that, with 0 ≤ p0 < 1, the only fixed vector on the left is the
zero vector. The process eventually makes it way out to infinity.

7.2. Abel limits. Ergodic theorems and Markov convergence theorems typically
consider Cesàro limits, cf. [28]. We can alternatively consider Abel limits. In both
contexts, problems with reducibility and periodicity are automatically handled, so
one gets convergence in the generalized sense.

Recall that for a sequence (x0, x1, . . .), the Abel limit is defined as

lim
t↑1

(1− t)
∑
n≥0

tnxn

noting that a constant sequence reproduces the correct value and similarly for a
convergent sequence. Note that Abel summation concerns the Abel limit of the
partial sums of a series.

For Markov limit theorems, of interest is convergence of the powers of a stochas-
tic matrix A. With A of norm (at most) one, the geometric series is well-defined
and determines the inverse

(I − tA)−1 =
∑
n≥0

tnAn

for 0 < t < 1. Thus we have the Abel limit, call it Ω, of the powers An defined by

lim
t↑1

(1− t)(I − tA)−1

see, e.g. [15], [10]. For numerical sequences it is known that the Abel limit will
equal the Cesàro limit if the latter exists.

Following [10], Proposition B.1., for, in general substochastic, finite matrices

P = (pij)1≤i,j≤n , 0 ≤ pij ≤ 1 ,
n∑

j=1

pij ≤ 1 ,

we have

Proposition 7.7. If P is a stochastic (n×n) matrix, then the Abel limit Ω exists
and satisfies

Ω = Ω2 = PΩ = ΩP .

Moreover, P has a nontrivial fixed point if and only if Ω ̸= 0.

The proof starts by showing the uniform boundedness by 1 of the matrix ele-
ments

⟨ei, Q(s)ej⟩ , 0 < s < 1 ,

where
Q(s) := (1− s)(I − sP )−1
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and {en : n = 1, 2, ...} is the standard basis of Rn. The Cantor diagonal process
yields a convergent subsequence Q(s′). Showing that its limit Ω is the only limit
point of Q(s) produces the Abel limit.

Replacing P by Â ∈ S with ∥Â∥ ≤ 1, we can form

Q(s) := (1− s)(I − sÂ)−1 = (1− s)
∑
n≥0

snÂn ,

which will have uniformly bounded entries (Q(s))ij if Â satisfies

∥Â∥ ≤ 1 .

The difficulty here is that we may not have strong convergence, so we cannot
guarantee that Ω will be non-trivial. As noted above, we will have convergence
in the compact case of a positive recurrent process to a nontrivial idempotent
operator.
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