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ABSENCE OF ENERGY LEVEL CROSSING FOR THE

GROUND STATE ENERGY OF THE RABI MODEL

MASAO HIROKAWA* AND FUMIO HIROSHIMA**

Abstract. The Hamiltonian of the Rabi model is considered. It is shown
in the light of quantum phase transition that the ground state energy of the
Rabi Hamiltonian does not cross any other energies.

1. Introduction

Cavity quantum electrodynamics has supplied us with stronger interaction than
the standard quantum electrodynamics (QED) does [8, 20]. Experimental physi-
cists usually demonstrate the interaction by a two-level atom coupled with a one-
mode light (i.e., single-mode laser) in a mirror cavity (i.e., a mirror resonator).
The region that the strong interaction in cavity QED belongs to is called the
strong coupling regime. At the dawn of the 21st century, the solid-state analogue
of the strong interaction in a superconducting system was theoretically proposed
in [15, 16], and it has been experimentally demonstrated in [3, 5, 23]. That is, the
atom, the light, and the mirror resonator in cavity QED are respectively replaced
by an artificial atom, a microwave, and a microwave resonator on a superconduct-
ing circuit. Here, the artificial atom is made by using a superconducting circuit
based on some Josephson junctions. This replaced cavity QED is the so-called
circuit QED. The circuit QED has been intensifying the coupling strength so that
its region is beyond the strong coupling regime. This amazing region of the cou-
pling strength between the artificial atom and the light is called the ultra-strong
coupling regime in circuit QED [4, 6, 7, 17]. Then, experimental physicists have
found some differences in physical phenomena between the two coupling regimes
[6, 17]. As one of the striking differences, there is the following. In the strong
coupling regime as well as in the weak coupling regime, the Jaynes-Cummings
(JC) model is useful to explain the experimental results [8, 5]. The Hamiltonian
of the JC model is obtained by applying the so-called rotating wave approximation
(RWA) to the Rabi Hamiltonian. On the other hand, in the ultra-strong coupling
regime, the JC model does not work, and thus, we need a help of the Rabi model
[6, 17]. The current cutting-edge technology of circuit QED is begining to show
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us the division between the two coupling regimes concretely. We are interested in
how physics determines this division.

We will see a difference between the Rabi model and the JC model from a
mathematical point of view in this paper. We pay particular attention to the
energy level crossing for the ground state as well as for the excited states. It is
well known that the energy level crossing for the ground state sometimes reveals
a quantum phase transition [22]. It was shown [9, 10] that the models of the
two-level atom coupled with the one-mode light such as the JC model turn out
many energy level crossings as the coupling strength grows larger and larger, and
then, the envelope made by some of the energy level crossings makes the ground
state energy (see Fig.1 and Eq.(2.6)). That is, the ground state is constructed
by a quantum phase transition. Such a type of quantum phase transition was
pointed out by Preparata [19]. In other word, for the JC model the quantum
phase transition in Rey’s sense [21] takes place. Meanwhile, in 2010 Braak [1]
had given a mathematically intriguing expressions of the eigenenergies of the Rabi
model. Then, the following questions arise and are problems of interest to us in
the case without the RWA: (i) are there any energy level crossings among them? If
so, (ii) how do they take place? We can conjecture that the ground state energy of
the Rabi model has no energy level crossing. In this paper we prove this fact with
the functional-integral method [12, 11] as a corollary of the fact stating that the
ground state energy of the Rabi model is simple (i.e., the ground state is unique).
It reveals us that it is in the ultra-strong coupling regime of circuit QED that
there is a big qualitative difference as well as quantitative one between the Rabi
model and the JC model. This interests us in the problem whether a quantum
phase transition lurks in the Rabi model.

2. Rabi Model

2.1. Definition. Let σx, σy, σz be the 2× 2 Pauli matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (2.1)

In this paper we adopt the natural unit: ~ = 1. The renormarized Hamiltonian of
the Rabi model is defined as a self-adjoint operator by

HR = ∆σz + ωa†a+ gσx(a+ a†) (2.2)

on the Hilbert space C2 ⊗ L2(R). Here ∆ > 0 and ω > 0 are respectively the
atom transition frequency and the cavity resonance frequency, g ∈ R stands for
a coupling constant, and a and a† denote the single mode bose annihilation and
creation operators satisfying [a, a†] = 1 and [a, a] = 0 = [a†, a†]. It is given by

a =
1√
2

(

1√
ω

d

dx
+
√
ωx

)

, a† =
1√
2

(

− 1√
ω

d

dx
+
√
ωx

)

. (2.3)

We are interested in studying spectral properties of eigenvalues ofHR, in particular
crossing of the ground state energy.

The absence of crossing can be derived from the simplicity of the ground state
energy of HR. We will construct a path integral representation of e−tHR to show
that the ground state energy is simple. This is a minor modification of recent
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papers [12, 11], where the Feynman-Kac type formula with spin is established. In
particular the spin-boson model is studied by path measure in [11] and we can
apply it in this paper since the Rabi model can be regarded as the single mode
photon version of the spin-boson model.

2.2. Two conjectures. Let us here consider the Rabi Hamilonian HR before the
renormalization:

HR = ∆σz + ω

(

a†a+
1

2

)

+ gσx

(

a+ a†
)

. (2.4)

In this paper we follow the clasification proposed in [2], and define the ultra-
strong coupling regime by the region in which the dimensionless coupling strength
g/ω > 0.1. Applying the RWA to HR, we have the JC Hasmiltonian:

HJC = ∆σz + ω

(

a†a+
1

2

)

+ g
(

σ−a
† + σ+a

)

, (2.5)

where σ± = (σx ± iσy)/2. We denote by E the ground state energy of HJC. The
JC model is a completely solvable model, and the eigenstate ϕν = ϕν(g) of HJC

and its corresponding eigenvalue Eν = Eν(g) are given for each ν ∈ Z in the
following procedure: Let

ϕg(x) =
(ω

π

)1/4

e−ωx2/2

be the normalized eigenvector associated with the lowest eigenvalue, 0, of the
harmonic oscillator

ωa†a =
1

2

(

− d2

dx2
+ ω2x2 − ω

)

.

Then Fock states are defined by

|n〉 = 1√
n!
(

n
∏

a†)ϕg, n = 0, 1, 2, · · ·

for the single mode photon with |0〉 = ϕg. Thus it follows that L
2(R) = ⊕∞

n=0C|n〉.
We define the spin ground state |−〉 =

[

0
1

]

and the spin excited state |+〉 =
[

1
0

]

of ∆σz . Then C2 = C|+〉 ⊕ C|−〉. Hence the total Hilbert space is represented as

C
2 ⊗ L2(R) = ⊕∞

n=0 (C|+〉 ⊗ |n〉 ⊕ C|−〉 ⊗ |n〉) .

We define states |−, n〉 and |+, n〉 by |−, n〉 = |−〉 ⊗ |n〉 and |+, n〉 = |+〉 ⊗ |n〉,
respectively. Then,











ϕ0 = |−, 0〉,
ϕ+|ν| = cos θ|ν||+, |ν| − 1〉+ sin θ|ν||−, |ν|〉, ν 6= 0,

ϕ−|ν| = − sin θ|ν||+, |ν| − 1〉+ cos θ|ν||−, |ν|〉, ν 6= 0,
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where θ|ν| = θ|ν|(g) =
1
2 tan

−1

(

2g
√

|ν|
2∆−ω

)

if 2∆ 6= ω; θ|ν| = π/4 if 2∆ = ω, and











E0 = − (2∆− ω)

2
,

E±|ν| = ω|ν| ±
√

(2∆− ω)2

4
+ g2|ν| , ν 6= 0.

Hence it follows that

HJCϕν = Eνϕν .

According to [9, 10], the remarkable finding for E is the energy level crossings in
the ultra-strong coupling regime: For each n = 0, 1, 2, · · · , there exists gn+1 > 0
such that E−n and E−(n+1) cross each other at g = gn+1, and











E = E−n, if g < gn+1,

E = E−n = E−(n+1), if g = gn+1,

E = E−(n+1), if g > gn+1,

provided 2∆ ≥ ω. See Fig.1. In other words, as coupling constant g gets large,
there exists νg ∈ Z− such that E = Eνg , and moreover, νg is strictly decreasing and
νg → −∞ as g → ∞. Namely, these energy level crossings take place and make the
ground state energy E as the envelop of Eν , ν = 0,−1,−2, · · · in Fig.1. We realize
that the ground state energy EJC is given by the envelope of the eigenenergies,
E−n, n ∈ N, then. Thus, the asymptotic behavior of the ground state energy EJC

is

EJC ∼ − g2

4ω
− (2∆− ω)2

4g2
ω as g → ∞. (2.6)

We also note that the ground-state entanglement [18] for the JC model. Namely,
for instance, the ground state is a separable state for g < g1, but it becomes an
entangled state for g ≥ g1. The details on gn and νg are in [9, 10].

In Fig.2 there is a numerical computation of the energy levels of HR. It says
that

(C1) there is no energy level crossing between the ground state energy and the
1st excited state energy;

(C2) we may say that there are just n energy level crossings between the 2n-th
excited state energy and the (2n+1)-th excited state energy, n = 1, 2, · · · .

We give a comment on (C2). In [13, III.] it is shown by constructing eigenvectors
concretely that there exist at least n energy level crossing.

In this paper, we will prove (C1).

3. Results and Proofs

Before going to show the Feynman-Kac formula of e−tHR , we prepare a proba-
bilistic description of HR.

Let σ = (σx, σy, σz) be elements of SU(2). The rotation group in R3 has an
adjoint representation on SU(2). Let n ∈ R3 be a unit vector and θ ∈ [0, 2π).
Thus we have e(i/2)θn·σ satisfies that

e(i/2)θn·σσµe
−(i/2)θn·σ = (Rσ)µ,
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Figure 1. Energy level crossing among Eν , ν = 0,−1,−2, · · · , of the
JC Hamiltonian. Each color indicares individual index ν of the energy
Eν . (a) 2∆ = ω, (b) 2∆ = 3ω.

where R denotes 3× 3 matrix representing the rotation around n with angle θ. In
particular for n = (0, 1, 0) and θ = π/2, we have

e(i/2)θn·σσxe
−(i/2)θn·σ = σz ,

e(i/2)θn·σσze
−(i/2)θn·σ = −σx.

Set U = e(iπ/4)σy . Then

UHRU
−1 = ωa†a+ gσz(a+ a†)−∆σx. (3.1)

Since ϕg is strictly positive, we can define the unitary operator Ug : L2(R) →
L2(R, ϕ2

gdx) by Ugf = ϕ−1
g f . We set the probability measure ϕ2

gdx on R by dµ.

Thus UHRU
−1 is transformed to the operator:

UgUHRU
−1U−1

g =
1

2

(

− d2

dx2
+ ωx

d

dx

)

+ gσz

√
2ωx−∆σx (3.2)
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Figure 2. Energy level of HR for 2∆ = ω. Each color indicates the
nth level of the energy for n = 1, 2, · · · from the bottom, where the 0th
level energy means the ground state energy.

in C2 ⊗ L2(R, dµ). Let us introduce Z2 = {−1,+1} to redefine the Hamiltonian
(3.2) on a set of scalar functions. We identify C2 ⊗ L2(R, dµ) with

H = L2(R× Z2, dµ) =

{

f = f(x, σ)

∣

∣

∣

∣

∣

∑

σ∈Z2

∫

|f(x, σ)|2dµ(x) < ∞
}

(3.3)

by C2⊗L2(R, dµ) ∋
[

f+(x)
f−(x)

]

7→ f(x, σ) ∈ H . Thus under this identification (3.2)

is transformed to the operator H :

Hf(x, σ) =

{

1

2

(

− d2

dx2
+ ωx

d

dx

)

+ g
√
2ωσx

}

f(x, σ)−∆f(x,−σ), σ ∈ Z2

(3.4)
in H . Thus we have the lemma below:

Lemma 3.1. The operator HR in C2 ⊗L2(R) is unitarily equivalent to H in H .

In what follows we deal with H instead of HR. Let

h =
1

2

(

− d2

dx2
+ ωx

d

dx

)

and (Xt)t≥0 be the Ornstein-Uhrenbeck process on a probability space (X ,B, P x).
We have P x(X0 = x) = 1

∫

dµ(x)EPx [Xt] = 0,

∫

dµ(x)EPx [XtXs] =
e−|t−s|ω

2ω
.

Here EQ [· · ·] denotes the expectation with respect to a probability measure Q.
The generator of Xt is given by −h and

(f, e−thg)H =

∫

dµ(x)EPx

[

f(X0)g(Xt)
]

.
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The distribution ρt(x, y) of Xt under P
x is given by

ρt(x, y) = ϕg(x)
−1Kt(x, y)ϕg(y), (3.5)

where Kt(x, y) denotes the Mehler kernel:

Kt(x, y) =
1

√

π(1− e−2t)
exp

(

4xye−t − (x2 + y2)(1 + e−2t)

2(1− e−2t)

)

.

See e.g., [14, 3.10.4] for the detail of Ornstein-Uhrenbeck processes and harmonic
oscillators. In order to show the spin part by a path measure we introduce a Poisson
process. Let (Nt)t≥0 be a Poisson process on some probability space (X ′,B′, ν)
with unit intensity, i.e.,

Eν [1lNt=n] =
tn

n!
e−t, n ≥ 0.

We define σt = (−1)Ntσ, σ ∈ Z2, for t ≥ 0. Let
∑

σ∈Z2

∫

dµ(x)EPxEν [· · ·] = E [· · ·].
Theorem 3.2. [Feynman-Kac formula] The following equalities hold:

(∆ > 0) (f, e−tHg)H = etE
[

f(X0, σ0)g(Xt, σt)e
−g

√
2ω

∫
t

0
σsXsds∆Nt

]

, (3.6)

(∆ = 0) (f, e−tHg)H = etE
[

1lNt=0f(X0, σ)g(Xt, σ)e
−gσ

√
2ω

∫
t

0
Xsds

]

. (3.7)

Proof. Let ∆ > 0. By a minor modification of [12, Theorem 5.10] we can see that

(f, e−tHg)H = etE
[

f(X0, σ0)g(Xt, σt)e
−g

√
2ω

∫
t

0
σsXsdse

∫
t

0
log∆dNs

]

. (3.8)

Here

∫ t

0

f(Ns)dNt =
∑

r,Nr+ 6=Nr−

f(Nr). Since

e
∫

t

0
log∆dNs = elog∆Nt

= ∆Nt ,

(3.6) follows. In the case of ∆ = 0 only the set Nt = 0 contributes to the path
integral. Then

(f, e−tHg)H = etE
[

f(X0, σ0)g(Xt, σt)e
−g

√
2ω

∫
t

0
σsXsds1lNt=0

]

. (3.9)

Then (3.7) follows. �

Corollary 3.3. [Uniqueness] Let E0 = inf σ(H). Then we have

dimker(H − E0) = 1,

i.e., the ground state of HR is unique.

Proof. Let f, g ≥ 0 but not identically zero. Then for sufficiently small ǫ > 0,
we see that both Ωf = {(x, σ) ∈ R × Z2|f(x, σ) > ǫ} and Ωg = {(x, σ) ∈ R ×
Z2|g(x, σ) > ǫ} have positive measures. We have by (3.6),

(f, e−tHg) ≥ ǫetE
[

1lΩf
(X0, σ0)1lΩg

(Xt, σt)e
−g

√
2ω

∫
t

0
σsXsds∆Nt

]

.

Since Ωf is a subset of R × Z2, we have Ωf =
⋃

σ∈Z2
(Ωσ

f , σ). Thus either Ω+
f

or Ω−
f (⊂ R) have at least a positive measure. Suppose that Ω+

f has a positive

measure. Similarly we see that Ωg =
⋃

σ∈Z2
(Ωσ

g , σ) and suppose that Ω+
g is a
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positive measure. Let Ω be the set of paths starting from the inside of (Ω+
f ,+)

and arriving at the inside of (Ω+
g ,+). We see that

E [1lΩ] = E

[

1lΩ+

f
(X0)1lΩ+

g
(Xt)1lNt=even

]

.

By using the distribution ρt of Xt we have

E [1lΩ] =

∞
∑

n=0

t2n

(2n)!
e−t

∫

Ω+

f

dx

∫

Ω+
g

dyϕg(x)Kt(x, y)ϕg(y) > 0.

Hence we conclude that Ω has a positive measure and

(f, e−tHg) ≥ ǫetE
[

1lΩe
−g

√
2ω

∫
t

0
σsXsds∆Nt

]

> 0.

Thus e−tH is a positivity improving operator. Thus dimker(H − E0) = 1 follows
from the Perron-Frobenius theorem. �

Corollary 3.4. [No crossing] The ground state energy of HR has no crossing

for all the values of g and ∆.

Let us define the self-adjoint operator K by

K =
1

2

(

− d2

dx2
+ ωx

d

dx

)

− |g|
√
2ω|x| −∆σx. (3.10)

It is trivial to see that H −K ≥ 0 as self-adjoint operator, and we can see that

ǫ−∆ ≤ inf σ(H), (3.11)

where ǫ = inf σ(12

(

− d2

dx2 + ωx d
dx

)

− |g|
√
2ω|x|). We state more strong statement.

By using the Feynman-Kac formula we have the inequality below.

Corollary 3.5. We have the inequality: |(f, e−tHg)| ≤ (|f |, e−tK |g|).
Proof. By the Feynman-Kac formula we have

|(f, e−tHg)H | ≤ etE
[

|f(X0, σ0)g(Xt, σt)|e|g|
√
2ω

∫
t

0
|Xs|ds∆Nt

]

. (3.12)

Then the corollary follows. �

4. Concluding Remarks

In this paper we have proved the first conjecture (C1) that the numerical com-
putation predicts, while the JC model has many energy level crossings for the
ground state energy in the ultra-strong coupling regime of circuit QED though it
has no energy level crossing in the weak and strong coupling regimes. It shows that
it is in the ultra-strong coupling regime that there is a big qualitative difference
as well as quantitative one between the JC model and the Rabi model.
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